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Abstract

It is proved that if the probability P is normalised Lebesgue measure on one

of the `n
p balls in Rn, then for any sequence t1, t2, . . . , tn of positive numbers,

the coordinate slabs {|xi| ≤ ti} are subindependent, namely,

P (∩n
1{|xi| ≤ ti}) ≤

n∏

1

P ({|xi| ≤ ti})

A consequence of this result is that the proportion of the volume of the

unit `n
1 ball which is inside the cube [−t, t]n is less than or equal to fn(t) =

(1 − (1 − t)n)n.

This estimate is remarkably accurate over most of the range of values of

t. A reverse inequality, demonstrating this, is the second major result of this

work. A similar phenomenon occurs for all `n
p balls.

A consequence of the subindependence of the coordinate slabs of the `n
p

balls, is a sort of Central Limit Theorem which is examined in the last chapter.

This states that as n → ∞, the average (n − 1)-dimensional volume of the

sections of the normalised `n
p ball at distance t from the origin, tends to a

Gaussian. In other words, if gθ is the density of the marginal of the `n
p -ball, in

direction θ, then

∫

Sn−1

gθ(t)dσ(θ) −→ 1

%
√

2π
exp

(
− t2

2%2

)
as n → ∞

for each t, uniformly in p.
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Introduction

Background

One of the principal problems we discuss in this piece of work, is to estimate

the volume of the intersection of an Euclidean ball with a cube, in Rn.

Even in two dimensions, the expression for the volume is rather compli-

cated. In higher dimensions, the picture of the intersection gets quite confus-

ing and it looks difficult to get accurate estimates just using geometric ideas.

However, although probabilistic methods look more hopeful, we shall see that

geometric ones do work better.

The results of our geometric approach are very surprising. Although the

method is technically simple, we obtain sharp approximations over the entire

range of sizes of the cube (see Theorems 2.1 and 2.2).

The original motivation for this study, was the hope that we could prove

that the proportion of the volume of the unit Euclidean ball which is outside

the cube [−t, t]n is of order at most exp
(
−nt2

2

)
. Such an estimate would imply
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very good lower bounds for the volume of the intersection of any sequence of

central cubes. By a central cube we mean any orthogonal transformation of

the cube [−t, t]n. Estimates of this kind have recently been found by Gluskin.

The order of exp
(
−nt2

2

)
should be set in context. A very simple geometric

argument gives an order of n · exp
(
−nt2

2

)
, as we shall explain: the gap looks

small, but the advantage that would be conferred by the better bound would

be considerable. The simple argument just mentioned is as follows. Let Bn
2

be the Euclidean unit ball. The volume of the ball which is outside the cube

[−t, t]n, where t ≤ 1, is clearly at most n times the volume of the ball which

is outside of each coordinate slab {|xi| ≤ t}. Thus, the proportion is at most

n ·
∫ 1

t
(1 − u2)

n−1

2 du
∫ 1

0
(1 − u2)

n−1

2 du

Now, we can use standard arguments to prove the following Theorem.

Theorem 1

∫ 1

t

(1 − u2)
n−1

2 du ≤ 1√
n
· exp

(
−nt2

2

)
when nt2 > 1 (1)

∫ 1

0

(1 − u2)
n−1

2 du ≥
√

π/8√
n

(2)

The question of course remains. Can we do better than that? Is it possible

to have an estimate of order exp
(
−nt2

2

)
as we would wish? It can be seen

that the question is really asking whether the overlaps between the parts of

the ball outside the different slabs are large enough that the above estimate is
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bad. It turns out that the answer is no, to both of these questions. The factor

n is absolutely necessary.

The answer is given by Theorem 2.1 below. There, it is proved that the

proportion of the volume of the ball which is inside the cube [−t, t]n is less

than, or equal to the n-th power of the proportion of its volume that is inside

one coordinate slab of width t. That is,

V oln(Bn
2 ∩ [−t, t]n)

V oln(Bn
2 )

≤
[
V oln(Bn

2 ∩ {|x1| ≤ t})
V oln(Bn

2 )

]n

or equivalently,

V oln(Bn
2 ∩ [−t, t]n)

V oln(Bn
2 )

≤
[∫ t

0
(1 − u2)

n−1

2 du
∫ 1

0
(1 − u2)

n−1

2 du

]n

This gives a lower bound for the proportion of the volume of the ball which is

outside the cube:

V oln(Bn
2 \[−t, t]n)

V oln(Bn
2 )

≥ 1 −
[∫ t

0
(1 − u2)

n−1

2 du
∫ 1

0
(1 − u2)

n−1

2 du

]n

It is not hard to check that when nt2 ≈ 2 log n, the above lower bound, is

roughly a constant. So, for this value of t, it is of order n exp
(
−nt2

2

)
. To see it,

we can use the upper bound 1− 1
4
(1−t2)n/2 for

∫ t

0
(1−u2)

n−1

2 du/
∫ 1

0
(1−u2)

n−1

2 du

which is discussed in Lemma A.1. When t2 ≈ 2 log n
n

this implies that

∫ t

0
(1 − u2)

n−1

2 du
∫ 1

0
(1 − u2)

n−1

2 du
≤ 1 − 1

4n

and thus,

V oln(Bn
2 \[−t, t]n)

V oln(Bn
2 )

≥ 1 −
(

1 − 1

4n

)n

≥ 1 − e−1/4
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The main Theorems

Although our original hope of better estimates for Euclidean balls turned out

to be false, our research in this direction, led us to obtain information about

the proportion of a general `n
p ball, inside a cube, which was far more accurate

than we could possibly have expected. This information in turn, very quickly

provides a “Central Limit Theorem” described below.

Recall that the unit `n
p ball which is denoted by Bn

p is the set {x =

(x1, . . . , xn) ∈ Rn :
∑n

i=1 |xi|p ≤ 1}. Several works have appeared in the

past, estimating the volumes of intersections of `p balls. The most noteworthy,

is that of Schechtman and Zinn, [3]. There, they deal with the more general

problem of estimating the proportion of the volume left in the `n
p ball after

removing a t-multiple of the `n
q ball, when p < q. They prove that this pro-

portion is of order exp(−cntp). Taking limits as q −→ ∞, they also mention

some results about the proportion of the volume of the `n
p ball which is outside

the cube [−t, t]n. Their results in this particular case, which is the one that

interests us, are summed up in the following two statements. (Their first result

in this particular range is rather weak, as it is a particular case of the easy

geometric argument mentioned before, but in the more general setting they

consider, there is no such obvious approach.)

If t ≥ τ

(
log n

n

)1/p

, then P ({||x||∞ ≥ t}) ≤ exp (−γntp/p)

and if
2

n1/p
≤ t ≤ 1

2
, then P ({||x||∞ ≥ t}) ≥ exp (−Γntp/p)
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where γ, Γ and τ are universal constants.

In the case q = ∞ considered here, our results are much stronger.

Our first main Theorem is the subindependence of coordinate slabs, stated

below as Theorem 2.1.

Theorem 2.1 (Subindependence of coordinate slabs) If the probability

P is normalised Lebesgue measure on one of the `n
p balls in Rn, then for any

sequence t1, . . . , tn of positive numbers,

P (∩n
1{|xi| ≤ ti}) ≤

n∏

1

P ({|xi| ≤ ti}).

Taking t1 = . . . = tn = t we get an upper bound for the proportion of the

volume of the unit `n
p ball which is inside the cube [−t, t]n. Our second main

Theorem, Theorem 3.1, shows that this bound is a very good approximation to

this proportion. For simplicity, we shall illustrate this only in the case p = 1.

In this case, the upper bound is given in the Corollary bellow:

Corollary 2.1.1 If Fn(t) is the proportion of the volume of the `n
1 ball inside

the cube [−t, t]n then

Fn(t) ≤ fn(t) = (1 − (1 − t)n)n

This upper bound is extremely precise as long as Fn(t) is not too small.

The easiest way to state this is to write it as an estimate for the volume outside

the cube, namely for 1 − Fn(t).
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Theorem 2.2 (An estimate in the reverse direction) With Fn(t) as

above,

1 − Fn(t)

1 − fn(t)
= 1 + O

(
(log n)3

n

)

as n → ∞ uniformly in t.

Theorem 2.2 enables us to describe the threshold behaviour of Fn(t) much

more precisely than Schechtman and Zinn. For example, if t = log n−log c
n

then

the information we get from Theorem 2.2 is that Fn(t) should be something

like fn(t), which in turn is something like

(1 − exp(− log n + log c))n =
(
1 − c

n

)n

' exp(−c).

In the last Chapter, we prove the third main Theorem of this work, The-

orem 6.1. This is a sort of Central Limit Theorem, which is almost entirely

an application of the subindependence of coordinate slabs. This states that

as n → ∞, the average (n − 1)-dimensional volume of the sections of the

normalised `n
p ball at distance t from the origin, tends to a Gaussian:

Theorem 6.1 If gθ is the density of the marginal in direction θ, of the `n
p -ball,

then
∫

Sn−1

gθ(t)dσ(θ) −→ 1

%
√

2π
exp

(
− t2

2%2

)
as n → ∞
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Organisation of the thesis

In Chapter 1, we start with some “easy” estimates for the proportion of the

volume of the `n
1 ball inside a cube. These already answer (in the negative)

the question discussed in the first part of this introduction.

With “F” as above, the result proved there, describes the asymptotic be-

haviour of Fn

(
1 −

(
x
n

) 1

n

)
. As n → ∞,

Fn

(
1 −

(x

n

) 1

n

)
−→ e−x

It is easy to see that when 1 −
(

x
n

)1/n ≈ log n
n

, the above relation implies that

Fn

(
log n

n

)
≈ e−1

which rules out the possibility of removing the “n factor”.

In Chapter 2 we give the proofs of the first two main Theorems mentioned

above, for the most simple case p = 1. In the next Chapter are given the proofs

of their general cases. Where the generalisation is quite similar, we just give a

brief sketch of the proof. This simplifying strategy, is the reason we illustrate

the most easy case p = 1 separately.

In Chapter 4 we also prove a result similar to Theorem 2.1, the subinde-

pendence of the complements of coordinate slabs:

P (∩n
1{|xi| ≥ ti}) ≤

n∏

1

P ({|xi| ≥ ti}).

A counterexample is given in Chapter 5 showing that the subindependence

of coordinate slabs is a property depending heavily upon the `n
p balls and not
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applicable for highly symmetric convex bodies in general. This check was

prompted by the realisation that the Theorem of Whitney-Loomis in the case

of the `n
p balls, is a limiting case of the subindependence of coordinate slabs.

Finally, in Chapter 6 we prove Theorem 6.1, which as we mentioned above,

is a sort of Central Limit Theorem.
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Chapter 1

An easy estimate

Theorem 2.1 states that Fn(t) is dominated by the function (1− (1− t)n)n, or

if we put x = n(1 − t)n, (0 < x < n),

Fn

(
1 −

(x

n

) 1

n

)
≤
(
1 − x

n

)n

In Theorem 2.2 it is proved that this is a very precise inequality.

Here, we are going to prove, by rather easy means, that the two functions

are asymptotically the same; namely that as n −→ ∞,

Fn

(
1 −

(x

n

) 1

n

)
−→ e−x

Our argument uses the exact formula for Fn

(
1 −

(
x
n

) 1

n

)
proved in The-

orem 1.2. The idea is to notice that each term of this series, converges to

the corresponding term of the series of e−x. Then we apply the Dominated

Convergence Theorem, to get the limit for the series.
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1.1 The asymptotic behaviour

Theorem 1.2, proved below shows that the proportion of the `n
1 ball inside the

cube [−t, t]n, is

Fn(t) =
n∑

j=0

(−1)j

(
n

j

)
(1 − jt)n

+

where as usual

x+ =






x when x ≥ 0

0 when x < 0.

If we put
(

n
j

)
= 0 when n < j, this can be written

Fn(t) =
∞∑

j=0

(−1)j

(
n

j

)
(1 − jt)n

+

We then want to prove the following:

Theorem 1.1 For all positive numbers x

∞∑

j=0

(−1)j

(
n

j

)(
1 − j

(
1 −

(x

n

) 1

n

))n

+

−→
∞∑

j=0

(−1)j x
j

j!
as n −→ ∞

Proof: We shall prove that for x and j fixed we have:

(
n

j

)(
1 − j

(
1 −

(x

n

) 1

n

))n

+

≤ xj

j!
(1.1)

and

(
n

j

)(
1 − j

(
1 −

(x

n

) 1

n

))n

+

−→ xj

j!
as n −→ ∞ (1.2)

Once (1.1) and (1.2) are proved, we need only apply The Dominated Con-

vergence Theorem.
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We shall first prove (1.1). Since
(

n
j

)
≤ nj

j!
, it is enough to prove that:

nj

(
1 − j

(
1 −

(x

n

) 1

n

))n

≤ xj (1.3)

whenever j is less than or equal to the integer part of
(
1 −

(
x
n

) 1

n

)−1

. Using

the fact that

1 − js ≤ (1 − s)j when 0 ≤ s ≤ 1 , j ≥ 1

for s = 1 −
(

x
n

) 1

n , we get:

1 − j

(
1 −

(x

n

) 1

n

)
≤

(x

n

) j
n

or equivalently

nj

(
1 − j

(
1 −

(x

n

) 1

n

))n

≤ xj

which is what we want.

For the proof of (1.2), we again notice that since j!
nj

(
n
j

)
→ 1 it is enough to

prove that

nj

(
1 − j

(
1 −

(x

n

) 1

n

))n

−→ xj as n −→ ∞ (1.4)

Equation (1.1) already gives us an upper bound. To get the lower bound

we notice first that since log t ≤ t − 1, we have

nj

(
1 − j

(
1 −

(x

n

) 1

n

))n

≥ nj

(
1 − j

n
(log n − log x)

)n

= nj

(
1 +

j log x

n
− j log n

n

)n

≥ nj

(
1 +

j log x

n

)n(
1 − j log n

n

)n

≥
(

1 +
j log x

n

)n
(

1 −
(

j log n

n

)2
)n

16



which converges to xj as n −→ ∞.

1.2 A formula for Fn(t)

In this section we prove that the proportion of the volume of the unit `n
1 ball

inside the cube [−t, t]n, which we denote, Fn(t), equals

n∑

j=0

(−1)j

(
n

j

)
(1 − jt)n

+

The proof uses probabilistic arguments, but as will become clear later, geo-

metric ones could just as well be used.

We first prove a Lemma which simply states that we can write down a for-

mula for the n-fold convolution gn = g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n times

of the uniform distribution

function in [0,1], g.

Lemma 1.1 If g1(s) = 1[0,1](s) and gn(s) =
∫ s

s−1
gn−1(u)du, then, for n ≥ 2

and s ≥ 0,

gn(s) =
1

(n − 1)!

n∑

j=0

(−1)j

(
n

j

)
(s − j)n−1

+

Proof: We prove this by induction:

Observe that for any j ≥ 0

∫ t

0

(u − j)n−1
+ du =

1

n
(t − j)n

+.

Assuming the formula for gn and using the fact that

gn+1(s) =

∫ s

0

gn(u) du−
∫ s−1

0

gn(u) du

17



we get

gn+1(s) =
1

n!

(
n∑

j=0

(−1)j

(
n

j

)
(s − j)n

+ −
n∑

j=0

(−1)j

(
n

j

)
(s − 1 − j)n

+

)

=
1

n!

(
n∑

j=0

(−1)j

(
n

j

)
(s − j)n

+ +

n+1∑

j=1

(−1)j

(
n

j − 1

)
(s − j)n

+

)

=
1

n!

(
n+1∑

j=0

(−1)j

(
n + 1

j

)
(s − j)n

+

)

We next prove the formula for Fn:

Theorem 1.2

Fn(t) =
n∑

j=0

(−1)j

(
n

j

)
(1 − jt)n

+ for all t ≥ 0

Proof: Recall that by Fn(t), we denote the proportion of the volume of the

unit `n
1 ball which is inside the cube [−t, t]n. For convenience, write F ∗

n(s) for

the proportion of the volume of the `n
1 ball of radius s which is inside the cube

[−1, 1]n. Obviously Fn and F ∗
n are related. Indeed

Fn(t) = F ∗
n(1/t)

Thus, our aim is to prove that

F ∗
n(s) =

n∑

j=0

(−1)j

(
n

j

)(
1 − j

s

)n

+

(1.5)

This being trivial for n = 1, we shall prove it for n ≥ 2.

Write Q+
n for the part of the cube which is in the positive orthant, that is,

Q+
n = [0, 1]n. Clearly

F ∗
n(s) =

V oln(B
n
1 (s) ∩ Q+

n )

V oln(Bn
1 (s) ∩ Rn

+)
(1.6)
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Now let X1, . . . , Xn be independent, identically distributed random variables,

each uniformly distributed on [0, 1]. Then the vector (X1, . . . , Xn) induces

Lebesgue measure on Q+
n

It is easy to see that if −→e is the unit vector (1/
√

n, . . . , 1/
√

n), and H the

hyperplane 〈−→e 〉⊥, then,

V oln−1

(
Q+

n ∩ (H + s−→e )
)

= density of

(
1√
n

n∑

i=1

Xi

)

at point s

=
√

n

(

density of

n∑

i=1

Xi at point
√

ns

)

So, for the volume V oln(Bn
1 (s) ∩ Q+

n ) we have:

V oln(Bn
1 (s) ∩ Q+

n ) =

∫ s/
√

n

0

V oln−1

(
Q+

n ∩ (H + u−→e )
)
du

=

∫ s/
√

n

0

√
n

(

density of

n∑

i=1

Xi at point
√

nu

)

du

=

∫ s

0

(

density of

n∑

i=1

Xi at point u

)

du (1.7)

Thus, all we need to do, is to calculate the density of
∑n

i=1 Xi. By indepen-

dence the density of the sum is the convolution of the densities of the Xi’s,

g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n times

. If we write gn for g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, we obtain

gn(s) =

∫ s

s−1

gn−1(u)du

and of course, g1 = 1[0,1]. By Lemma 1.1, we have that for u ≥ 0,

gn(u) =
1

(n − 1)!

n∑

j=0

(−1)j

(
n

j

)
(u − j)n−1

+ (1.8)
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So, by integrating (1.8), we get from (1.7) that:

V oln(Bn
1 (s) ∩ Q+

n ) =
1

n!

n∑

j=0

(−1)j

(
n

j

)
(s − j)n

+

Hence, dividing by the volume of the whole corner,

F ∗
n(s) =

V oln(Bn
1 (s) ∩ Q+

n )

V oln(Bn
1 (s) ∩Rn

+)
=

n∑

j=1

(−1)j

(
n

j

)(
1 − j

s

)n

+

Remarks

1. We notice that

F ∗
n(s) = ns−n

∫ s

s−1

un−1F ∗
n−1(u)du (1.9)

Indeed, by (1.6) and (1.7),

∫ s

0

gn−1(u)du =
sn−1

(n − 1)!
· F ∗

n−1(s)

thus,

∫ u

u−1

gn−1(x)dx =
un−1

(n − 1)!
· F ∗

n−1(u) − (u − 1)n−1

(n − 1)!
· F ∗

n−1(u − 1)

or

gn(u) =
un−1

(n − 1)!
· F ∗

n−1(u) − (u − 1)n−1

(n − 1)!
· F ∗

n−1(u − 1)

and so,

F ∗
n(s) =

V oln(Bn
1 (s) ∩ Q+

n )

V oln(Bn
1 (s) ∩Rn

+)

=
n!

sn

∫ s

0

gn(u)du

=
n!

sn

∫ s

0

(
un−1

(n − 1)!
· F ∗

n−1(u) − (u − 1)n−1

(n − 1)!
· F ∗

n−1(u − 1)

)

=
n

sn

(∫ s

0

un−1F ∗
n−1(u)du −

∫ s−1

−1

un−1F ∗
n−1(u)du

)

= ns−n

∫ s

s−1

un−1F ∗
n−1(u)du

20



Now, if we put t = 1/s in (1.9) we get:

Fn(t) = ntn
∫ 1/t

1/t−1

un−1Fn−1(1/u)du

If we substitute u = 1−v
t

⇔ v = 1 − tu the above relation becomes:

Fn(t) = n

∫ t

0

(1 − v)n−1Fn−1

(
t

1 − v

)
dv. (1.10)

This relation will reappear later as (2.1).

2. We could use (1.9), as a recurrence relation for F ∗
n , to find its precise for-

mula, in a rather more direct way than first finding gn. Since (1.10) was

proved in a geometric way and since it is equivalent to (1.9), this means

that one could use a geometric rather than a probabilistic argument to

find the formula for Fn.

3. The formula for Fn can be also obtained by just integrating the differen-

tial equation (2.2) (see Chapter 2).
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Chapter 2

Coordinate slabs of the `n1 ball

In this Chapter we give a detailed proof for the simplest case of Theorem 2.1

(the subindependence of coordinate slabs) and Theorem 3.1 (an estimate in

the reverse direction); namely the case p = 1.

Theorem 2.1 (Subindependence of coordinate slabs) If the probability

P is normalised Lebesgue measure on one of the `n
p balls in Rn, then for any

sequence t1, . . . , tn of positive numbers,

P (∩n
1{|xi| ≤ ti}) ≤

n∏

1

P ({|xi| ≤ ti}).

The particular case p = 1, t1 = . . . = tn of Theorem 2.1 gives an upper

bound for the proportion of the volume of the `n
1 ball which is inside the cube

[−t, t]n . Since the proportion of the volume of the `n
1 ball which is inside a

coordinate slab of width 2t is 1 − (1 − t)n when t ≤ 1, the result in this case

is given by the following Corollary.
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Corollary 2.1.1 If Fn(t) is the proportion of the volume of the `n
1 ball inside

the cube [−t, t]n then

Fn(t) ≤ fn(t) = (1 − (1 − t)n)n

Although Fn(t) is the function
∑n

0 (−1)j
(

n
j

)
(1−jt)n

+, (see Chapter 1), which

is a spline with many knots, we prove in Theorem 2.2 (the particular case of

Theorem 3.1) that the polynomial fn(t) = (1 − (1 − t)n)n is an astonishingly

good approximation to Fn(t), at least when Fn(t) is not too small. The easiest

way to state this is to write it as an estimate for the volume outside the cube,

namely for 1 − Fn(t).

Theorem 2.2 (An estimate in the reverse direction) With Fn(t) as

above,

1 − Fn(t)

1 − fn(t)
= 1 + O

(
(log n)3

n

)

as n → ∞, uniformly in t.

2.1 Method

In this section we will briefly explain the crucial points of the proofs of these

two Theorems for the simplest case when p = 1 and t1 = · · · = tn = t.

The proof of Theorem 2.1, (the upper bound for Fn) depends on a very

convenient interaction between two different equations expressing Fn and its
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derivative in terms of Fn−1. Each of these equations is proved using a sim-

ple geometric argument: they can readily be combined to give a differential

inequality for Fn which integrates up to the stated result.

These equations are:

Fn(y) = n

∫ y

0

(1 − u)n−1Fn−1

(
y

1 − u

)
du

d

dy
Fn(y) = n2(1 − y)n−1Fn−1

(
y

1 − y

)

The proof of Theorem 2.2, (a lower bound for Fn) is technically more

complicated although it is much less delicate. The crucial point is to show

that at its maximum, the function 1−Fn

1−fn
is dominated by the value of a related

function, which in turn can be shown to be small by means of the (rather

precise) upper bound, already proved.

In fact, this related function, say Gn(t), is not as small as we would like

it to be in the whole interval (0,1), but it behaves nicely in a smaller interval

[tn, 1/2], for some value of tn which is roughly like log n−log log n
n

. It is in this

range that 1−Fn

1−fn
actually attains its maximum. However, for technical reasons,

it is simpler to show directly that 1−Fn

1−fn
is small outside this interval.

2.2 The upper bound.

In this section we shall give a detailed proof of Theorem 2.1 in the case p = 1.
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• Proof of Theorem 2.1 for the case p = 1, t1 = . . . = tn = t :

Except in the trivial case t ≥ 1 the problem is to show that the proportion

of the volume of the unit `n
1 ball which is inside the cube Qn(t) = [−t, t]n

is bounded from above by the function fn(t) = (1 − (1 − t)n)n. This

proportion will be denoted by Fn(t).

The proof uses the following two equations:

Fn(y) = n

∫ y

0

(1 − u)n−1Fn−1

(
y

1 − u

)
du (2.1)

d

dy
Fn(y) = n2(1 − y)n−1Fn−1

(
y

1 − y

)
(2.2)

Assuming these, we proceed as follows. Since Fn−1 is an increasing func-

tion, Fn−1

(
y

1−u

)
is increasing in u. So from (2.1) we get:

Fn(t) ≤ nFn−1

(
y

1 − y

)∫ y

0

(1 − u)n−1du

For convenience, we shall abbreviate the integral
∫ y

0
(1−u)n−1du by Yn(y).

Then (2.2) and the inequality can be written,

Fn(y) ≤ nFn−1

(
y

1 − y

)
Yn(y) (2.3)

d

dy
Fn(y) = n2Fn−1

(
y

1 − y

)
d

dy
Yn(y) (2.4)

If we eliminate the factor nFn−1

(
y

1−y

)
we get:

d
dy

Fn(y)

Fn(y)
≥ n

d
dy

Yn(y)

Yn(y)
(2.5)

and, by integrating from t to 1 we get the desired result:

Fn(t) ≤
(

Yn(t)

Yn(1)

)n

= (1 − (1 − t)n)n
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It remains to prove the relations (2.1) and (2.2).

For the first one,

Fn(y) =
V oln(Qn(y) ∩ Bn

1 )

V oln(Bn
1 )

=
n!

2n
2

∫ y

0

V oln−1(Qn(y) ∩ Bn
1 ∩ {x1 = u})du

=
n!

2n−1

∫ y

0

V oln−1(Qn−1(y) ∩ Bn−1
1 (1 − u))du

= n

∫ y

0

(1 − u)n−1V oln−1(Qn−1(y) ∩ Bn−1
1 (1 − u))

V oln−1(B
n−1
1 (1 − u))

du

= n

∫ y

0

(1 − u)n−1Fn−1

(
y

1 − u

)
du

For the second one, put Hn(y) = V oln(Qn(y) ∩ Bn
1 ). Since Fn(y) =

Hn(y)
V oln(B1

n)
= n!

2n Hn(y), to find d
dy

Fn(y) it suffices to find d
dy

Hn(y), which is;

d

dy
Hn(y) = lim

h→0

Hn(y + h) − Hn(y)

h

= 2nV oln−1(Qn−1(y) ∩ Bn−1
1 (1 − y))

and thus,

d

dy
Fn(y) = n2 V oln−1(Qn−1(y) ∩ Bn−1

1 (1 − y))

V oln−1(B
n−1
1 )

= n2(1 − y)n−1V oln−1(Qn−1(y) ∩ Bn−1
1 (1 − y))

V oln−1(B
n−1
1 (1 − y))

= n2(1 − y)n−1Fn−1

(
y

1 − y

)

• Proof of Theorem 2.1 for the case p = 1 :

For convenience, let Fn(t1, . . . , tn) denote the proportion of the volume

of the unit `n
1 ball which is inside the cuboid Qn(t1, . . . , tn) = [−t1, t1] ×
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. . . × [−tn, tn]. The Theorem states that

Fn(t1, . . . , tn) ≤ Yn(t1)

Yn(1)
. . .

Yn(tn)

Yn(1)

where Yn(t) is the integral
∫ min{1,t}
0

(1 − u)n−1du

Of course, if one of the ti’s is zero, then Fk(t1, . . . , tk) = 0 and the

inequality is trivial. It is also trivial when all the ti’s are greater than 1.

If neither of these trivial cases applies, we prove that as long as for some

i the ti is less than 1, the value of the function Fn at point (t1, . . . , tn)

is dominated by an appropriate multiple of the value of Fn, at the point

with the ith coordinate replaced by 1 and the rest remaining the same,

i.e.

Fn(t1, . . . , tn) ≤ Yn(ti)

Yn(1)
Fn(t1 . . . , ti−1, 1, ti+1 . . . , tn) (2.6)

So, if we suppose, without loss of generality, that 0 < ti < 1 for i =

1 . . . k, (1 < k ≤ n) and ti ≥ 1 for i = k + 1, . . . , n, then we will have in

turn the following inequalities:

Fn(t1, . . . , tn) ≤ Yn(t1)

Yn(1)
Fn(1, t2 . . . , tn)

≤ Yn(t1)

Yn(1)

Yn(t2)

Yn(1)
Fn(1, 1, t3 . . . , tn)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ Yn(t1)

Yn(1)
. . .

Yn(tk)

Yn(1)
Fn(1, . . . , 1, tk+1, . . . , tn)
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Since Fn(1, . . . , 1, tk+1 . . . , tn) = 1 the proof is complete.

Thus, the crucial point is to prove (2.6). Without loss of generality, we

will prove this for i = 1, namely the relation:

Fn(t1, . . . , tn) ≤ Yn(t1)

Yn(1)
Fn(1, t2 . . . , tn) (2.7)

when 0 < t1 < 1.

To do this, we again combine two equations. The first one relates Fn

and Fn−1, and the second one relates Fn−1 and the partial derivative of

Fn with respect to the first coordinate. These are:

Fn(y, t2, . . . , tn) =

= n

∫ y

0

(1 − u)n−1Fn−1

(
t2

1 − u
, . . . ,

tn
1 − u

)
du (2.8)

≤ nFn−1

(
t2

1 − y
, . . . ,

tn
1 − y

)∫ y

0

(1 − u)n−1du

= nFn−1

(
t2

1 − y
, . . . ,

tn
1 − y

)
Yn(y)

and

d

dy
Fn(y, t2, . . . , tn) = n(1 − y)n−1Fn−1

(
t2

1 − y
, . . . ,

tn
1 − y

)
(2.9)

= Fn−1

(
t2

1 − y
, . . . ,

tn
1 − y

)
d

dy
Yn(y)

Eliminating Fn−1

(
t2

1−y
, . . . , tn

1−y

)
, we get

d
dy

Fn(y, t2, . . . , tn)

Fn(y, t2, . . . , tn)
≥

d
dy

Yn(y)

Yn(y)
(2.10)

which integrates to (2.7).
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The proofs of (2.8) and (2.9) are similar to the proofs of (2.1) and (2.2).

Remarks

1. (2.5) and (2.10) actually state that the functions Fn(y)
(Yn(y))n and Fn(y,t2,...,tn)

Yn(y)
,

are increasing in y.

A consequence of this, is that the function Fn(t1,...,tn)
Yn(t1)...Yn(tn)

is increasing in

each coordinate.

2. If 0 < ti < 1 for i = 1 . . . k, (1 < k ≤ n) and ti ≥ 1 for i = k + 1, . . . , n,

then Theorem 2.1 states that

Fn(t1, . . . , tn) ≤ (1 − (1 − t1)
n) . . . (1 − (1 − tk)

n)

2.3 The lower bound

Using the notation introduced in the previous section, we shall prove that the

function fn(t) is not only an upper bound (see Theorem 2.1), but it is also

a very good approximation to Fn(t), within the interesting range of t. More

precisely, we prove that the function 1−Fn(t)
1−fn(t)

converges to 1 uniformly in t, as

stated in the next Theorem;

Theorem 2.1 (An estimate in the reverse direction)

1 − Fn(t)

1 − fn(t)
= 1 + O

(
(log n)3

n

)

uniformly in t.
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We focus our attention on the point tmax, where 1−Fn(t)
1−fn(t)

attains its maximum

value. In the first Lemma below, we find a function Gn(t) which dominates

1−Fn(t)
1−fn(t)

at tmax. This related function, is proved to be small in a particular

range, where tmax actually occurs. Outside this range 1−Fn(t)
1−fn(t)

is small for very

simple reasons. To avoid technical difficulties, we don’t actually prove that

tmax is in this particular range.

Lemma 2.1 At its maximum point, the function
1−Fn(t)
1−fn(t)

is dominated by the

value of the function Gn(t) =






[
1−(1− t

1−t)
n−1

1−(1−t)n

]n−1

, 0 < t ≤ 1/2

[1 − (1 − t)n]−(n−1) , 1/2 < t < 1

Proof of Lemma 2.1: Before embarking upon the proof it is perhaps worth

mentioning that it depends critically upon Theorem 2.1 (the upper bound for

Fn) already proved.

It is easy to check that 1−Fn(t)
1−fn(t)

→ 1 as t → 0 or t → 1. So 1−Fn

1−fn
attains its

maximum in (0,1).

So
[

d

dt
log

(
1 − Fn(t)

1 − fn(t)

)]

tmax

= 0

i.e.

1 − Fn(tmax)

1 − fn(tmax)
=

d
dt

Fn(tmax)
d
dt

fn(tmax)

But d
dt

Fn(t) has already been calculated in (2.2). Substituting this in the

above relation, as well as d
dt

fn(tmax) we get that

1 − Fn(tmax)

1 − fn(tmax)
=

Fn−1

(
tmax

1−tmax

)

(1 − (1 − tmax)n)n−1
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Of course, Fn−1

(
tmax

1−tmax

)
= 1 if 1/2 < tmax < 1.

To prove the required inequality for 0 < tmax ≤ 1/2, it is sufficient to apply

Theorem 2.1 in order to dominate Fn−1

(
tmax

1−tmax

)
. Thus we get:

1 − Fn(tmax)

1 − fn(tmax)
≤




1 −

(
1 − tmax

1−tmax

)n−1

1 − (1 − tmax)n





n−1

= Gn(tmax)

Proof of Theorem 2.2: As we have already mentioned, for technical rea-

sons, we shall divide the interval (0,1) into three parts, and we will examine

separately the possibilities that tmax occurs in each of these parts.

More precisely, choose tn such that (1 − tn)n = log n
n

and consider the

intervals (0, tn),
[
tn, 1

2

]
and

(
1
2
, 1
)
.

tn is something like log n−log log n
n

and is certainly less than log n
n

.

Numerical evidence indicates that tmax is about log n
n

but we eliminate the

other intervals directly.

• We shall prove that for t ∈
(

1
2
, 1
)
, the function 1−Fn

1−fn
is decreasing and

therefore, tmax does not occur in this open interval.

It is quite easy to calculate that Fn(t) = 1 − n(1 − t)n when t ∈
(

1
2
, 1
)

by integrating (2.2) where Fn−1

(
y

1−y

)
= 1.

So, 1−Fn

1−fn
becomes:

n(1 − t)n

1 − (1 − (1 − t)n)n
.

If we put s = 1 − (1 − t)n, we get,

1 − Fn

1 − fn
=

n(1 − s)

1 − sn
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= n(sn−1 + sn−2 + · · · + 1)−1

Which is a decreasing function of s, and therefore a decreasing function

of t.

• We shall prove that for all t in (0, tn) not only is the function 1−Fn(t)
1−fn(t)

close to 1, but so is the function (1 − fn(t))−1.

Since fn is increasing,

fn(t) = (1 − (1 − t)n)n

≤ (1 − (1 − tn)n)n

=

(
1 − log n

n

)n

≤ exp(− log n) =
1

n

Hence,

1

1 − fn

= 1 + O

(
1

n

)

• Finally we study Fn(t) for t ∈
[
tn, 1

2

]

By Lemma 2.1,

1 − Fn(tmax)

1 − fn(tmax)
≤ Gn(tmax)

We shall prove that Gn(t) is as small as required in the range t ∈
[
tn, 1

2

]
,

namely that

Gn(t) ≤ 1 + O

(
(log n)3

n

)
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By the first part of Lemma 2.1, Gn in this range is:

Gn(t) =

[

1 +
(1 − t)n −

(
1 − t

1−t

)n−1

1 − (1 − t)n

]n−1

Thus, it is enough to prove that

(1 − t)n −
(
1 − t

1−t

)n−1

1 − (1 − t)n
≤ O

(
(log n)3

n2

)

Since the factor 1−(1−t)n is like a constant in this interval, it suffices to

show that (1−t)n−
(
1 − t

1−t

)n−1
is dominated by the decreasing function

n(1− t)n−2t2 (decreasing for t ≥ 2/n) which at tn is as small as required.

Indeed,

(1 − t)n −
(

1 − t

1 − t

)n−1

≤ (1 − t)n −
(

1 − t

1 − t

)n

=

∫ 1−t

1− t
1−t

nun−1du

≤ t2

1 − t
n(1 − t)n−1

= n(1 − t)n−2t2

≤ n(1 − tn)n−2t2n

≤ 2n(1 − tn)nt2n

≤ 2n
log n

n

(log n)2

n2

= O

(
(log n)3

n2

)

which completes the proof.
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Chapter 3

Coordinate slabs of the `np balls

In this Chapter we give a sketch of the proof of Theorem 2.1 for the general

case p ≥ 1.

As in the previous chapter, the subindependence property gives an upper

bound for the proportion of the volume of the `n
p ball which is inside the cube

[−t, t]n.

Theorem 3.1, an estimate in the reverse direction which generalizes Theo-

rem 2.2, states that this upper bound is again a very good approximation in

the extreme cases when n
p

is either like zero or infinity.

A remark upon Theorem 3.1, shows that this may not be the case when n
p

is held fixed.

For the sake of readability, we are not going to introduce new notation

with “p” subscripts, so we again use Fn(t1, . . . , tn) for the proportion of the

volume of the `n
p ball which is inside the box [−t1, t1]×· · ·× [−tn, tn] (or Fn(t)

34



when t1 = · · · = tn = t), Yn(t) for
∫ t

0
(1 − up)(n−1)/pdu and fn(t) for

[
Yn(t)
Yn(1)

]n
,

the upper bound of Fn(t), resulting from Theorem 2.1. By vn,p we denote the

volume of the Bn
p ball.

3.1 The subindependence property

Sketch of the proof of Theorem 2.1 for the case p > 1,

Since the proof of this case does not differ too much from the one given for

the case p = 1, we shall only write the two basic equations that are used in

place of (2.8) and (2.9).

The relations are as follows;

Fn(y, t2, . . . , tn) =

=
2vn−1,p

vn,p

∫ y

0

(1 − up)
n−1

p Fn−1

((
tp2

1 − up

) 1

p

, . . . ,

(
tpn

1 − up

) 1

p

)

du(3.1)

≤ 2vn−1,p

vn,p
Fn−1

((
tp2

1 − yp

) 1

p

, . . . ,

(
tpn

1 − yp

) 1

p

)

Yn(y)

d
dy

Fn(y, t2, . . . , tn) =

=
2vn−1,p

vn,p
(1 − yp)

n−1

p Fn−1

((
tp2

1 − yp

) 1

p

, . . . ,

(
tpn

1 − yp

) 1

p

)

(3.2)

=
2vn−1,p

vn,p
Fn−1

((
tp2

1 − yp

) 1

p

, . . . ,

(
tpn

1 − yp

) 1

p

)
d

dy
Yn(y)
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3.2 An estimate in the reverse direction

In this section we prove a result analogous to Theorem 2.2, but for the `n
p ball:

namely a lower bound for the proportion of its volume which is inside the cube

[−t, t]n (Theorem 3.1).

The method we follow, is more or less the same as the one we used in

Theorem 2.2. But the process is carried out in full, because we want our

results not only to generalise Theorem 2.2, but also to describe the way the

proportion changes, when n and p change independently.

The Theorem we prove is:

Theorem 3.1 For any n and p, the following estimates hold:

I. If φ is such that 0 < φ ≤ e−2 and tn such that (1 − tpn)
n
p = φ, then,

1 − Fn(t)

1 − fn(t)
≤






[
1 −

(
1 − φ

2p

)n]−1

for t ∈ (0, tn)

[
1 + c · 1

n
· φ (− log φ)1+1/p

]n−1

for t ∈ [tn, 1)

where c is an absolute constant.

II.

1 − Fn(t)

1 − fn(t)
≤ 2

n−1

p

A first obvious consequence of the second part of the Theorem 3.1 is the

following Corollary.

Corollary 3.1.1

1 − Fn(t)

1 − fn(t)
−→ 1 as

p

n
−→ ∞ uniformly in t.
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The result of Corollary 3.1.1, justifies our feeling that as p grows and the

`n
p ball approaches more and more to the cube, Fn looks more like fn. In other

words, slabs behave more and more as if they are independent.

Because our initial aim was to generalize Theorem 2.2, we must also prove

a result in which n tends to infinity. This is done in the following Corollary.

Corollary 3.1.2 For each n and p, we define φ = 2p
n
· log

(
ne−2

2p
+ 1
)
. Then

for tn such that (1 − tpn)
n
p = φ,

1 − Fn(t)

1 − fn(t)
≤






1 + c1 · p
n

for t ∈ (0, tn)
[
1 + c2 · 1

n
· φ (− log φ)1+1/p

]n−1

for t ∈ [tn, 1)

where c1 and c2 are universal constants.

As a consequence, we have that as n
p
−→ ∞,

1 − Fn(t)

1 − fn(t)
= 1 + O

(
(log (n/p + 1))2+1/p

n/p

)

uniformly in t.

Proof of Corollary 3.1.2: We first prove that φ ≤ e−2, so that we may

invoke Theorem 3.1. Indeed,

φ =
2p

n
· log

(
ne−2

2p
+ 1

)
≤ 2p

n
· ne−2

2p
= e−2

Then, according to Theorem 3.1, in the interval (0, tn)

1 − Fn(t)

1 − fn(t)
≤

[
1 −

(
1 − φ

2p

)n]−1
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=



1 −



1 −
log
(

ne−2

2p
+ 1
)

n





n



−1

≤
[

1 −
(

ne−2

2p
+ 1

)−1
]−1

= 1 + 2e2 · p

n

Obviously, φ ≤ 2 log(n/p+1)
n/p

.

Also when n
p

is large enough, − log φ ≤ log(n/p + 1), which explains the

consequence.

By Corollary 3.1.1 and Corollary 3.1.2 we conclude that as n
p

tends to zero

or infinity, 1−Fn

1−fn
tends to 1, uniformly in t. The natural thing to ask then,

is what happens when n
p

tends to a positive number. Is it true that even so,

1−Fn

1−fn
tends to 1? The answer is no. A counterexample is given in the second

Remark upon Theorem 3.1, appearing later on.

Our task now is to prove Theorem 3.1. As was mentioned above, the idea

of the proof remains the same as in Theorem 2.2. We again focus our attention

on the point tmax, where 1−Fn(t)
1−fn(t)

attains its maximum value. In the first Lemma

below, we find a function Gn(t) which dominates 1−Fn(t)
1−fn(t)

at tmax. This related

function, is proved to be bounded as required in a particular range. Outside

this range 1−Fn(t)
1−fn(t)

is small for very simple reasons.

The following Lemma, which gives this related function Gn(t), is the ana-

logue of Lemma 2.1.
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Lemma 3.1 At its maximum point, the function
1−Fn(t)
1−fn(t)

is dominated by the

value of the function Gn(t) =









Yn−1

(
( tp

1−tp )
1
p

)
/Yn−1(1)

Yn(t)/Yn(1)




n−1

, 0 < tp ≤ 1/2

[Yn(t)/Yn(1)]−(n−1) , 1/2 < tp < 1

Proof of Lemma 3.1: The proof is very similar to the proof of Lemma 2.1,

so it is omitted.

Before giving the proof of Theorem 3.1, we prove two Lemmata that will

be used there. In the case of p = 1, these Lemmata become trivial, which is

the reason they are not isolated in the argument for Theorem 2.2. In Lemma

3.2, we prove that

Yn−1(t)

Yn−1(1)
≤ Yn(t)

Yn(1)

and in Lemma 3.3 we give a lower and an upper bound for tn, the point

defined in Theorem 3.1, which again determines the partition of (0,1) into

three intervals, needed to study 1−Fn

1−fn
in a more effective way. These intervals

are (0, tn), [tn, 2
−1/p] and (2−1/p, 1).

In the proof of Theorem 3.1 we use an approximate formula for Yn(t)
Yn(1)

which

is proved in the Appendix in Lemma A.1. We do not discuss this in the main

part of this section, because its proof is quite technical.

Lemma 3.2 For t > 0, let Sn(t) be the slab {|x1| ≤ t}. Then,

V oln(Sn(t) ∩ Bn
p )

V oln(Bn
p )

≥
V oln−1(Sn−1(t) ∩ Bn−1

p )

V oln−1(Bn−1
p )
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Proof:

R

R
n−1

−1

−1

1

10

u

t−t

Slab

slice

Figure 1

It is easy to see that at a level “xn = u”(see Figure 1) the proportion of

the volume of the (n − 1)-dimensional ball which is inside the n-dimensional

slab Sn(t) at this level, is greater than the proportion of the volume of the unit

`n−1
p ball which is inside the same slab. This tells us that,

V oln−1(Sn(t) ∩ Bn
p ∩ {xn = u})

(1 − up)
n−1

p V oln−1(Bn−1
p )

≥
V oln−1(Sn−1(t) ∩ Bn−1

p )

V oln−1(Bn−1
p )

.

Therefore,

V oln(Sn(t) ∩ Bn
p ) = 2vn−1,p

∫ 1

0

V oln−1(Sn(t) ∩ Bn
p ∩ {xn = u})

V oln−1(Bn−1
p )

du

≥ 2vn−1,p

∫ 1

0

(1 − up)
n−1

p
V oln−1(Sn−1(t) ∩ Bn−1

p )

V oln−1(Bn−1
p )

du

=
V oln−1(Sn−1(t) ∩ Bn−1

p )

V oln−1(Bn−1
p )

V oln(Bn
p )
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In the next Lemma we give lower and upper bounds for tn. It is clear from

the proof why we need some condition like φ ≤ e−2, although we could replace

it by the weaker one, φ ≤
(

n
n+p+1

)n
p
.

Lemma 3.3 If φ is such that 0 < φ ≤ e−2, then for tn such that (1−tpn)
n
p = φ,

p + 1

n + p + 1
≤ tpn ≤ p(− log φ)

n

Proof:

The first inequality is equivalent to

(1 − tpn)
n
p ≤

(
n

n + p + 1

)n
p

⇔
(

1 +
p + 1

n

)n
p

≤ (1 − tpn)−
n
p

⇔
(

1 +
p + 1

n

)n
p

≤ 1

φ

but the last inequality is obviously true since

(
1 +

p + 1

n

)n
p

≤ e
p+1

p ≤ e2 ≤ 1

φ

For the second one, if p(− log φ)
n

≥ 1, we have nothing to prove. Otherwise,

it is easy to see that

(
1 − p(− log φ)

n

)n
p

≤ φ = (1 − tpn)
n
p

which implies what we want.

Proof of part I of Theorem 3.1: As we have already mentioned, for technical

reasons, we shall divide the interval (0,1) into three parts, and we will examine

41



separately the possibilities that tmax occurs in each of these parts. These are

(0, tn),
[
tn,
(

1
2

) 1

p

]
and

((
1
2

) 1

p , 1
)
.

• We shall prove that for tp ∈
(

1
2
, 1
)
, the function 1−Fn(t)

1−fn(t)
is decreasing, so

tmax is not in this open interval. Indeed, it is quite easy to calculate that

in this interval, 1 − Fn(t) = n
(
1 − Yn(t)

Yn(1)

)
. So, 1−Fn(t)

1−fn(t)
becomes

n
(
1 − Yn(t)

Yn(1)

)

1 −
(

Yn(t)
Yn(1)

)n

or if we put s = Yn(t)
Yn(1)

,

n(1 − s)

1 − sn
= n(1 + s + s2 + · · ·+ sn−1)−1

which is a decreasing function in s, so it is a decreasing function in t as

well.

• We shall prove that for all t in (0, tn) not only is the function 1−Fn(t)
1−fn(t)

bounded by the appropriate expression, but so is (1 − fn(t))−1.

Since fn is increasing,

fn(t) =

[
Yn(t)

Yn(1)

]n

≤
[
Yn(tn)

Yn(1)

]n

Using Lemma A.1 to bound Yn(tn)
Yn(1)

, we get:

fn(t) ≤
(

1 − 1

2p
(1 − tpn)

n
p

)n

=

(
1 − φ

2p

)n
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• Finally we study Fn(t) for t ∈
[
tn,
(

1
2

)1/p
]

By Lemma 3.1 ,

1 − Fn(tmax)

1 − fn(tmax)
≤ Gn(tmax)

We shall prove that Gn(t) is as small as required in this range. Since

Gn(t) =



1 +
Yn−1

((
tp

1−tp

) 1

p

)
/Yn−1(1) − Yn(t)/Yn(1)

Yn(t)/Yn(1)





n−1

it suffices to prove that

Yn−1

((
tp

1−tp

) 1

p

)
/Yn−1(1) − Yn(t)/Yn(1)

Yn(t)/Yn(1)
≤ O

(
1

n
· φ (− log φ)1+1/p

)

But in this interval, the denominator Yn(t)
Yn(1)

is like a constant since by

Lemma A.1

Yn(t)

Yn(1)
≥ Yn(tn)

Yn(1)
≥ 1 − (1 − tpn)

n
p = 1 − φ ≥ 1 − e−2

So it is enough to show that

Yn−1

((
tp

1−tp

) 1

p

)

Yn−1(1)
− Yn(t)

Yn(1)
≤ O

(
1

n
· φ (− log φ)1+1/p

)

But, by Lemma 3.2 we get:

Yn−1

((
tp

1−tp

) 1

p

)

Yn−1(1)
− Yn(t)

Yn(1)
≤

Yn

((
tp

1−tp

) 1

p

)

Yn(1)
− Yn(t)

Yn(1)

=
1

Yn(1)

∫ ( tp

1−tp )
1
p

t

(1 − up)
n−1

p du

≤ 1

Yn(1)
(1 − tp)

n−1

p

((
tp

1 − tp

) 1

p

− t

)

≤ 1

Yn(1)

tp+1

p(1 − tp)
(1 − tp)

n−1

p
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The last inequality is true because

t2p

1 − tp
=

tp

1 − tp
− tp

=

∫ ( tp

1−tp )
1
p

t

pxp−1dx

≥ ptp−1

((
tp

1 − tp

) 1

p

− t

)

Now we notice that in this interval, the function tp+1(1− tp)
n
p is decreas-

ing. (It is decreasing for tp ≥ p+1
n+p+1

which is a wider range according to

Lemma 3.3). Also, (1 − tp)−1 ≤ 2.

So we have:

Yn−1

((
tp

1−tp

) 1

p

)

Yn−1(1)
− Yn(t)

Yn(1)
≤ 4

pYn(1)
tp+1(1 − tp)

n
p

≤ 4

pYn(1)
tp+1
n (1 − tpn)

n
p

=
4

pYn(1)
tp+1
n φ

To complete the proof, we only need apply Lemma 3.3, in order to bound

tn by p(− log φ)
n

, and to notice that Yn(1) is like (1/n)1/p. Thus,

Yn−1

((
tp

1−tp

) 1

p

)

Yn−1(1)
− Yn(t)

Yn(1)
≤ c · 4

p
· n1/p

(
p(− log φ)

n

)1+1/p

φ

= c · 1

n
· φ(− log φ)1+1/p

Where c is an absolute constant.

Proof of part II of Theorem 3.1: Again we focus our attention at tmax, the

point where 1−Fn

1−fn
attains its maximum. We shall prove that

1 − Fn(tmax)

1 − fn(tmax)
≤ 2

n−1

p
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.

Since 1−Fn(tmax)
1−fn(tmax)

≤ Gn(tmax) ( Lemma 3.1) and tmax does not belong in

(2−1/p, 1), as was observed in the proof of the first part of Theorem 3.1, it

suffices to prove that for all t in (0, 2−1/p],

Gn(t) ≤ 2
n−1

p

Using Lemma 3.1 and Lemma 3.2, for t ∈ (0, 2−1/p],

Gn(t) ≤




Yn

((
tp

1−tp

)1/p
)

Yn(t)





n−1

(3.3)

Substituting x = (1 − tp)1/p u in
∫ ( tp

1−tp )
1/p

0 (1 − up)
n−1

p du we get:

Yn

((
tp

1 − tp

)1/p
)

=

∫ ( tp

1−tp )
1/p

0

(1 − up)
n−1

p du

=

∫ t

0

(
1 − xp

1 − tp

)n−1

p

(1 − tp)−1/pdx

= (1 − tp)−
n
p

∫ t

0

(1 − xp − tp)
n−1

p dx

≤ (1 − tp)−
n
p

∫ t

0

[(1 − xp)(1 − tp)]
n−1

p dx

= (1 − tp)−
1

p

∫ t

0

(1 − xp)
n−1

p dx

= (1 − tp)−
1

p Yn(t)

Substituting this in (3.3), we get that

Gn(t) ≤ (1 − tp)−
n−1

p ≤ 2
n−1

p
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Remarks

1. In the proof of the first part of Theorem 3.1, we have actually proved

that for t ∈ [tn, 1),

1 − Fn(t)

1 − fn(t)
≤
[
1 + c · 1

n
· φ(− log φ)1+1/p

]n−1

2. As was mentioned in the begining of this section, by the Corollaries 3.1.1

and 3.1.2, we can conclude that 1−Fn

1−fn
−→ 1 as n

p
−→ 0 or ∞. The

natural thing to ask then, is whether we can have a similar statement

even when n
p

converges to a positive number. The answer is negative,

and we give a counterexample:

Take the case where p = n − 1. In this case we can easily calculate that

Yn(t)

Yn(1)
=

n + 1

n

(
1 − tn

n + 1

)
t

Therefore for t = 2−1/p = 2−1/(n−1) and n large enough we have:

(
Yn(t)

Yn(1)

)n

∼ e · e−1/2 · 1

2
≤ 7

8

Thus,

Yn(t)

Yn(1)
≤
(

7

8

)1/n

But for t ∈ [2−1/p, 1) we know the precise formula for 1−Fn(t)
1−fn(t)

which is a

decreasing function of Yn(t)
Yn(1)

as was observed in the proof of Theorem 3.1.

So, for t = 2−1/p and n large enough (and therefore p large enough), we
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have:

1 − Fn(t)

1 − fn(t)
=

n
(
1 − Yn(t)

Yn(1)

)

1 −
(

Yn(t)
Yn(1)

)n

≥
n
(
1 −

(
7
8

)1/n
)

1 − 7
8

= 8n

(

1 −
(

7

8

)1/n
)

≥ 1.01

The last inequality is true, simply because for n large,

(
1 − 1.01

8n

)n

∼ exp

(
− 1.01

8

)
>

7

8

.

47



Chapter 4

Complements of coordinate

slabs

The subindependence of coordinate slabs discussed in the previous chapters,

made use of an accurate method for studying volumes. Here, using exactly

the same ideas, we prove a complementary result, the subindependence of the

complements of coordinate slabs, stated in the Theorem below.

It is actually this statement that will be used in the last Chapter where we

prove a sort of Central Limit Theorem.

The proof, though similar to the one of Theorem 2.1, is given in full, but

not in great detail, as we assume the reader has become familiar with the

method.
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Theorem 4.1 (Subindependence of complements of coordinate slabs)

If the probability P is normalised Lebesgue measure on one of the `n
p balls in

Rn, then for any sequence t1, . . . , tn of positive numbers,

P (∩n
1{|xi| ≥ ti}) ≤

n∏

1

P ({|xi| ≥ ti}).

Proof : For a fixed p ≥ 1, let F̂n(t1, . . . , tn) denote the proportion of the

volume of the unit `n
p ball which is outside of all slabs {|xi| < ti}, and Ŷn(t)

the integral
∫ 1

min{1,t}(1 − up)
n−1

p du. Then, Theorem 4.1 states that

F̂n(t1, . . . , tn) ≤ Ŷn(t1)

Ŷn(0)
. . .

Ŷn(tn)

Ŷn(0)

The case that at least one of the ti’s is greater than or equal to 1 is trivial.

Suppose then that this is not the case. We shall prove that the value of

the function F̂n at point (t1, . . . , tn) is dominated by an appropriate multiple

of the value of F̂n, at the point with the ith coordinate replaced by 0 and the

rest remaining the same, i.e.

F̂n(t1, . . . , tn) ≤ Ŷn(ti)

Ŷn(0)
F̂n(t1 . . . , ti−1, 0, ti+1 . . . , tn) (4.1)

So, we shall have in turn the following inequalities:

F̂n(t1, . . . , tn) ≤ Ŷn(t1)

Ŷn(0)
F̂n(0, t2 . . . , tn)

≤ Ŷn(t1)

Ŷn(0)

Ŷn(t2)

Ŷn(0)
F̂n(0, 0, t3 . . . , tn)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ Ŷn(t1)

Ŷn(0)
. . .

Ŷn(tn)

Ŷn(0)
F̂n(0, . . . , 0)
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Since F̂n(0, . . . , 0) = 1, the proof is complete.

Thus, the crucial point is to prove (4.1). Without loss of generality, we

shall prove this for i = n, namely the relation:

F̂n(t1, . . . , tn) ≤ Ŷn(tn)

Ŷn(0)
F̂n(t1 . . . , tn−1, 0) (4.2)

To do this, we combine two equations. The first one relates F̂n and F̂n−1,

and the second one relates F̂n−1 and the partial derivative of F̂n with respect

to the n-th coordinate.

These are:

F̂n(t1, . . . , tn−1, x) =

=
2vn−1,p

vn,p

∫ 1

x

(1 − up)
n−1

p F̂n−1

(
t1

(1 − up)1/p
, . . . ,

tn−1

(1 − up)1/p

)
du (4.3)

≤ 2vn−1,p

vn,p
F̂n−1

(
t1

(1 − xp)1/p
, . . . ,

tn−1

(1 − xp)1/p

)∫ 1

x

(1 − up)
n−1

p du

=
2vn−1,p

vn,p

F̂n−1

(
t1

(1 − xp)1/p
, . . . ,

tn−1

(1 − xp)1/p

)
Ŷn(x)

and

d
dx

F̂n(t1, . . . , tn−1, x) =

= −2vn−1,p

vn,p
(1 − xp)

n−1

p F̂n−1

(
t1

(1 − xp)1/p
, . . . ,

tn−1

(1 − xp)1/p

)
(4.4)

=
2vn−1,p

vn,p
F̂n−1

(
t1

(1 − xp)1/p
, . . . ,

tn−1

(1 − xp)1/p

)
d

dx
Ŷn(x)

where vn,p is the volume of the unit `n
p ball and x is a non-negative number,

less than 1.

By eliminating the factor
2vn−1,p

vn,p
F̂n−1

(
t1

(1−xp)1/p , . . . , tn−1

(1−xp)1/p

)
we get:

d
dx

F̂n(t1, . . . , tn−1, x)

F̂n(t1, . . . , tn−1, x)
≤

d
dx

Ŷn(x)

Ŷn(x)
(4.5)
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and, by integrating from 0 to tn we get (4.2).

It remains to prove (4.3) and (4.4).

For the first one we have:

F̂n(t1, . . . , tn−1, x) =

=
2

vn,p

∫ 1

x

V oln−1({|xi| ≥ ti, i = 1, . . . , n − 1} ∩ Bn
p ∩ {xn = u})du

=
2

vn,p

∫ 1

x

V oln−1

(
{|xi| ≥ ti, i = 1, . . . , n − 1} ∩ Bn−1

p

(
(1 − up)1/p

))
du

=
2vn−1,p

vn,p

∫ 1

x

(1 − up)
n−1

p

V oln−1

(
{|xi| ≥ ti, i = 1, . . . , n − 1} ∩ Bn−1

p

(
(1 − up)1/p

))

V oln−1

(
Bn−1

p ((1 − up)1/p)
) du

=
2vn−1,p

vn,p

∫ 1

x

(1 − up)
n−1

p F̂n−1

(
t1

(1 − up)1/p
, . . . ,

tn−1

(1 − up)1/p

)
du

To prove the second one, let

Ĥn(x) = V oln({|xi| ≥ ti, i = 1, . . . , n − 1, |xn| ≥ x} ∩ Bn
p )

Then,

d

dx
F̂n(t1, . . . , tn−1, x) =

d
dx

Ĥn(x)

vn,p

But

d
dx

Ĥn(x) = − limh→0
Ĥn(x)−Ĥn(x+h)

h
=

= −2V oln−1({|xi| ≥ ti, i = 1, . . . , n − 1} ∩ Bn
p ∩ {xn = x})

= −2V oln−1

(
{|xi| ≥ ti, i = 1, . . . , n − 1} ∩ Bn−1

p

(
(1 − xp)1/p

))

So,
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d
dx

F̂n(t1, . . . , tn−1, x) =

= −2vn−1,p

vn,p
(1 − xp)

n−1

p ×

×
V oln−1

(
{|xi| ≥ ti, i = 1, . . . , n − 1} ∩ Bn−1

p

(
(1 − xp)1/p

))

V oln−1

(
Bn−1

p ((1 − xp)1/p)
)

= −2vn−1,p

vn,p

(1 − xp)
n−1

p F̂n−1

(
t1

(1 − xp)1/p
, . . . ,

tn−1

(1 − xp)1/p

)
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Chapter 5

A counterexample

Whitney and Loomis, proved an inequality which gives an upper bound for

the volume of a convex body, in terms of the (n − 1)-Lebesgue measures of

its orthogonal projections onto the 1-codimensional subspaces perpendicular

to an orthonormal basis. The Theorem they prove is:

Theorem 5.1 (Whitney-Loomis) For any convex body K, if Pi is the or-

thogonal projection to 〈ei〉⊥, then,

[V oln(K)]n−1 ≤
n∏

i=1

V oln−1 (Pi(K))

There is a relation between this Theorem and Theorem 2.1, when K is one

of the unit `n
p balls. In fact, we notice that if we rewrite Theorem 2.1 as

[V oln(K)]n−1 ≤
∏n

i=1 V oln (K ∩ {|xi| ≤ t})
V oln (K ∩ Qn(t))

and then take limits for t → 0, we get the Whitney-Loomis inequality for these

particular K’s.
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Of course, in the above limit we don’t actually take the orthogonal pro-

jections but instead we take the intersections of the body and the coordinate

hyperplanes, which is the same since the body is coordinate symmetric.

Thus, in the case of the `n
p balls, the Whitney-Loomis Theorem is the limit

case of Theorem 2.1. Since there is such a relation between the two Theorems,

and since Whitney-Loomis Theorem is true for all convex bodies, it is natural

to ask whether Theorem 2.1 is true of all coordinate symmetric convex bodies,

not just the `n
p balls. It can be proved, by rather easy means, that this is true

for n = 2. However, the answer is no, for n ≥ 3.

We give a counterexample in the 3-dim Euclidean space. The coordinate

symmetric convex body we consider, is an `1 ball, which has been stretched

and rotated by 45o about the z-axis. The body is the convex hull of the points

(0, 0,±1) and the square in the x, y plane with corners (±1,±1, 0). This is:

K = co{(1, 1, 0), (1,−1, 0), (−1,−1, 0), (−1, 1, 0), (0, 0, 1), (0, 0,−1)}

Now, it is a simple calculation, to see that Theorem 2.1 fails in this case.

Indeed, let S1 be the central slab perpendicular to the x-axis of width 1, i.e.

S1 =
{
|x1| ≤ 1

2

}
, S2 be the central slab perpendicular to the y-axis of width

1, i.e. S2 =
{
|x2| ≤ 1

2

}
, and S3 be the central slab perpendicular to the z-axis

of width 2 (which includes the body), i.e. S3 = {|x3| ≤ 1}.

Then, V ol (S1 ∩ K) = V ol (S2 ∩ K) = 11/6, V ol (S3 ∩ K) = V ol(K) =

8/3 and V ol (K ∩ S1 ∩ S2 ∩ S3) = 4/3. So,
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V ol (K ∩ (∩3
i=1Si))

V ol(K)
=

1

2

and

V ol (K ∩ S1)

V ol(K)
· V ol (K ∩ S2)

V ol(K)
· V ol (K ∩ S3)

V ol(K)
=

121

256
<

1

2
.
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Chapter 6

A Central Limit Theorem

This section is almost entirely an application of the subindependence of coordi-

nate slabs proved in the previous section. Our aim is to prove a sort of Central

Limit Theorem for the `p balls. On the probability space of the normalized `n
p

ball, say K, with probability measure the Lebesgue measure in K, we define

the random variables x 7→ 〈x, θ〉, for each θ ∈ Sn−1. We prove that the average

of their densities is very close to a Gaussian.

More precisely, if we denote by gθ(t) these densities, we prove that as n

tends to infinity,

∫

Sn−1

gθ(t)dσ(θ) −→ 1

%
√

2π
exp

(
− t2

2%2

)

for all t ∈ R.

Here, σ is the rotation invariant probability measure on the sphere Sn−1 =

{x ∈ Rn :
∑

x2
i = 1}, and % is a number to be specified.
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The proof is composed of two main steps. Firstly, we prove that

∫

Sn−1

gθ(t)dσ(θ) ∼
∫

K

1√
2π

√
n

|x| exp

(
−t2

2

n

|x|2
)

where the symbol “∼” is used here in the usual way:

fn ∼ gn ⇔ lim
n→∞

fn

gn
= 1.

Then, using the subindependence of the coordinate slabs and standard prob-

abilistic arguments, we prove that “most” of the mass of K is inside a shell

where |x|2
n

is approximately %2. Applying this to the integral on the right hand

side of the above relation, we get what is required.

6.1 Preliminaries

Before stating our Theorem we make a few remarks about these R.V.s and

calculate their densities gθ and their variances.

• First of all we notice that for each fixed n and p, they all have the same

variance %n =
∫

K
〈x, θ〉2.

Indeed, write θ = θ1e1 + . . . + θnen, where θi ∈ R s.th.
∑n

i=1 θ2
i = 1.

Since K is coordinate symmetric,
∫

K
〈x, ei〉 〈x, ej〉 = 0 when i 6= j, and

∫
K
〈x, ei〉2 does not depend on i. Therefore, if we put %2

n =
∫

K
〈x, ei〉2,

we have:

∫

K

〈x, θ〉2 =

∫

K

(
n∑

i=1

θ2
i 〈x, ei〉2 + 2

∑

i6=j

θiθj 〈x, ei〉 〈x, ej〉
)
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=
n∑

i=1

(
θ2

i

∫

K

〈x, ei〉2
)

+ 2
∑

i6=j

(
θiθj

∫

K

〈x, ei〉 〈x, ej〉
)

=
n∑

i=1

(
θ2

i

∫

K

〈x, ei〉2
)

=

n∑

i=1

(
θ2

i %
2
n

)

= %2
n

• The sequence {%n}∞n=1 converges to a number say %. (This is the number

that appears in the statement of the Central Limit Theorem above).

Indeed, if we put λ for the radius of K, we get:

%2
n =

∫

K

x2
1 = 2

∫ λ

0

u2V oln−1(K ∩ {x1 = u})du

= 2

∫ λ

0

u2(λp − up)
n−1

p V oln−1(B
n−1
p )du

= 2vn−1,p

∫ 1

0

λ2v2λn−1(1 − vp)
n−1

p λdv

= 2λn+2vn−1,p

∫ 1

0

v2(1 − vp)
n−1

p dv

=
2vn−1,p

(vn,p)
1+2/n

∫ 1

0

v2(1 − vp)
n−1

p dv

Using the fact that vn,p = [2Γ(1+1/p)]n

Γ(1+n/p)
, and Stirling’s formula, we get

that n−3/p 2vn−1,p

(vn,p)1+2/n converges to a constant cp, which depends only on p.

Actually, this cp is bounded in “p”, a piece of information which will be

of use later.

But

lim
n→∞

n
3

p

∫ 1

0

v2(1 − vp)
n−1

p dv = lim
n→∞

∫ n1/p

0

y2

(
1 − yp

n

)n−1

p

dy

=

∫ ∞

0

y2 exp

(
−yp

p

)
dy
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• The densities are the functions: gθ(t) = V oln−1

(
K ∩

(
〈θ〉⊥ + tθ

))
, since

∫ t

−∞
gθ(u)du = P (〈x, θ〉 ≤ t) =

∫ t

−∞
V oln−1

(
K ∩

(
〈θ〉⊥ + uθ

))
du

6.2 The basic approximation

We start by proving the critical approximation mentioned before, for the inte-

gral
∫

Sn−1 gθ(t)dσ(θ) that interests us. So, we want to prove that:

∫

Sn−1

gθ(t)dσ(θ) ∼
∫

K

1√
2π

√
n

|x| exp

(
−t2

2

n

|x|2
)

(6.1)

We shall prove this for t ≥ 0. A similar argument can be applied for t ≤ 0.

We first recall that if v is a unit vector in Rn, then,

σ(|〈θ, v〉| > t) =

∫ 1

t
(1 − u2)

n−3

2 du
∫ 1

0
(1 − u2)

n−3

2 du

So we have:

∫

Sn−1

gθ(t)dσ(θ) =

∫

Sn−1

lim
δ→0

1

δ
V oln(K ∩ {t ≤ 〈x, θ〉 ≤ t + δ})dσ(θ)

= lim
δ→0

1

δ

∫

Sn−1

∫

K

1{t≤〈x,θ〉≤t+δ}dx dσ(θ)

= lim
δ→0

1

δ

∫

K

∫

Sn−1

1{t≤〈x,θ〉≤t+δ}dσ(θ) dx

= lim
δ→0

1

δ

∫

K

σ

({
t

|x| ≤
〈

x

|x| , θ
〉

≤ t + δ

|x|

})
dx

= lim
δ→0

1

δ

∫

K

1

2

∫ (t+δ)/|x|
t/|x| (1 − u2)

n−3

2 du
∫ 1

0
(1 − u2)

n−3

2 du
dx

We need only notice now that

lim
δ→0

1

δ

∫ (t+δ)/|x|

t/|x|
(1 − u2)

n−3

2 du =
1

|x|

(
1 − t2

|x|2
)n−3

2

∼ 1

|x| exp

(
−t2

2

n

|x|2
)
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and that

2

∫ 1

0

(1 − u2)
n−3

2 du ∼
√

n

2π

to complete the proof of (6.1).

6.3 The main Theorem

The above integral over K is an average of Gaussian densities of different

variances. The key idea is that most of these Gaussians have about the same

variance because |x|√
n

is typically very close to %n: i.e. that the set where |x|√
n

is “far” from %n, has small probability. More precisely, it is proved in Lemma

6.3, that for all positive numbers r,

P

(∣∣∣∣
|x|2
n

− %2
n

∣∣∣∣ ≥ r

)
≤ 35

nr2
%4

n

Both Lemma 6.1, and the Corollary following Lemma 6.2 below, are used

in the proof of Lemma 6.3. Our aim in these two statements, is to bound from

above, expressions of the form
∫

K
x2m1

1 . . . x2ml
l by an appropriate expression

involving just the familiar
∫

K
x2

i where xi denotes 〈x, ei〉.

This is done in two steps:

Firstly, in Lemma 6.1 we prove a subindependence property for the coor-

dinate R.V.s xi. i.e. that:

∫

K

x2m1

1 . . . x2ml
l ≤

l∏

i=1

∫

K

x2mi
i
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Then in the Corollary to Lemma 6.2, we prove that each term of the form

∫
K

x2m
i can be bounded from above by a multiple of the m-th power of

∫
K

x2
i .

i.e. that:
∫

K

x2m
i ≤ (2m)!

2
3m−1

(∫

K

x2
i

)m

As was mentioned above, Lemma 6.1 uses the subindependence of the com-

plements of the coordinate slabs of the `n
p -ball, while Lemma 6.2 uses standard

results concerning log-concave functions.

Lemma 6.1 With K a normalized `p-ball as above,

∫

K

x2m1

1 . . . x2ml
l ≤

l∏

i=1

∫

K

x2mi
i

Where the mi are positive integers and 1 ≤ l ≤ n.

Proof: We shall give the proof only for l = 2. The general case is similar

(and in fact we only need the special case). In this case, we have to prove the

inequality:
∫

K

x2m1

1 x2m2

2 ≤
∫

K

x2m1

1

∫

K

x2m2

2

Notice that:
∫

K∩{x1≥0,x2≥0}
x2m1

1 x2m2

2 =

=

∫

K∩{x1≥0,x2≥0}

(
2m1

∫ x1

0

u2m1−1du

)(
2m2

∫ x2

0

v2m2−1dv

)

= 4m1m2

∫

K∩{x1≥0,x2≥0}

(∫

R2
+

u2m1−1v2m2−11{x1≥u,x2≥v}dudv

)
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= 4m1m2

∫

R2
+

(∫

K∩{x1≥0,x2≥0}
u2m1−1v2m2−11{x1≥u,x2≥v}

)
dudv

= 4m1m2

∫

R2
+

u2m1−1v2m2−1P (x1 ≥ u, x2 ≥ v)dudv

Now, by the subindependence of complements of coordinate slabs,

P (x1 ≥ u, x2 ≥ v) ≤ P (x1 ≥ u)P (x2 ≥ v)

and therefore,

4m1m2

∫

R2
+

u2m1−1v2m2−1P (x1 ≥ u, x2 ≥ v)dudv ≤

≤ 4m1m2

∫

R2
+

u2m1−1v2m2−1P (x1 ≥ u)P (x2 ≥ v)dudv

=

(∫ ∞

0

2m1u
2m1−1P (x1 ≥ u)du

)(∫ ∞

0

2m2v
2m2−1P (x2 ≥ v)dv

)

Using Fubini again,
∫∞
0

2m1u
2m1−1P (x1 ≥ u)du =

∫
K∩{x1≥0} x2m1

1 , and

∫∞
0

2m2v
2m2−1P (x2 ≥ v)dv =

∫
K∩{x2≥0} x2m2

2 , so the following inequality holds:

∫

K∩{x1≥0,x2≥0}
x2m1

1 x2m2

2 ≤
∫

K∩{x1≥0}
x2m1

1

∫

K∩{x2≥0}
x2m2

2

This clearly suffices for the proof.

The following Lemma, is based on standard results for log-concave func-

tions, whose origins date back to the works of Schur and Ostrowski.

Lemma 6.2 If f is a decreasing log-concave function, then for any positive

integer m the following relation holds:

(∫ ∞

0

f(x)dx

)m−1 ∫ ∞

0

x2mf(x)dx ≤ (2m)!

2
3m−1

(∫ ∞

0

x2f(x)dx

)m
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Proof: We shall use the two following inequalities which are true for all

decreasing log-concave functions, and k positive integer:

∫∞
t

f(x)dx

f(t)
≤
∫∞
0

f(x)dx

f(0)
when t ≥ 0 (6.2)

and
(∫ ∞

0

f(x)dx

)k

≤ k (f(0))k−1

∫ ∞

0

xk−1f(x)dx (6.3)

We firstly prove the following inductive relation:

∫ ∞

0

xkf(x)dx ≤ k

∫∞
0

f(x)dx

f(0)

∫ ∞

0

xk−1f(x)dx (6.4)

Indeed,

∫ ∞

0

xkf(x)dx =

∫ ∞

0

f(x)

(∫ x

0

ktk−1dt

)
dx

=

∫ ∞

0

ktk−1

(∫ ∞

t

f(x)dx

)
dt

≤ k

∫∞
0

f(x)dx

f(0)

∫ ∞

0

tk−1f(t)dt

and in case that k ≥ 2 we can apply (6.4) k − 2 successive times, to get:

∫ ∞

0

xkf(x)dx ≤ k(k − 1) · · ·3
(∫∞

0
f(x)dx

f(0)

)k−2 ∫ ∞

0

x2f(x)dx

=
k!

2

(∫∞
0

f(x)dx

f(0)

)k−2 ∫ ∞

0

x2f(x)dx

So, for k = 2m
(∫ ∞

0

f(x)dx

)m−1 ∫ ∞

0

x2mf(x)dx ≤

≤ (2m)!

2

(∫∞
0

f(x)dx
)3m−3

(f(0))2m−2

∫ ∞

0

x2f(x)dx (6.5)
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Now using (6.3) for k = 3 and taking the (m − 1)-th power, we get:

(∫ ∞

0

f(x)dx

)3m−3

≤ (f(0))2m−2 3m−1

(∫ ∞

0

x2f(x)dx

)m−1

(6.6)

which combined with (6.5), gives the desired result.

Corollary 6.2.1 For all positive integers m,

∫

K

x2m
i ≤ (2m)!

2
3m−1

(∫

K

x2
i

)m

(6.7)

Proof: It is easy to check that for all positive integers m,

∫

K

x2m
i = λ2m

∫ 1

0
u2m(1 − up)

n−1

p du
∫ 1

0
(1 − up)

n−1

p du
(6.8)

and then the relation we want to prove becomes:

λ2m

∫ 1

0
u2m(1 − up)

n−1

p du
∫ 1

0
(1 − up)

n−1

p du
≤ (2m)!

2
3m−1

(
λ2

∫ 1

0
u2(1 − up)

n−1

p du
∫ 1

0
(1 − up)

n−1

p du

)m

⇔
(∫ 1

0

(1 − up)
n−1

p du

)m−1 ∫ 1

0

u2m(1 − up)
n−1

p du ≤

≤ (2m)!

2
3m−1

(∫ 1

0

u2(1 − up)
n−1

p du

)m

Which is true by Lemma 6.2, since the function f(u) = (1−up)
n−1

p is decreasing

and log-concave.

Lemma 6.3 For all positive numbers r,

P

(∣∣∣∣
|x|2
n

− %2
n

∣∣∣∣ ≥ r

)
≤ 35

nr2
%4

n
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Proof: We first prove that 1
n2

∫
K
|x|4 is close to %4

n, namely that,

%4
n ≤ 1

n2

∫

K

|x|4 ≤
(

1 +
35

n

)
%4

n (6.9)

The first inequality is obvious by Cauchy-Schwartz.

For the second one, we have:

∫

K

|x|4 =

∫

K

(
n∑

i=1

x2
i

)2

=
n∑

1

∫

K

x4
i +

∑

i6=i

∫

K

x2
i x

2
j

≤ n

∫

K

x4
i +

∑

i6=i

∫

K

x2
i

∫

K

x2
j

Using the Corollary of Lemma 6.2,
∫

K
x4

i ≤ 36
(∫

K
x2

i

)2
= 36%4

n. Thus,

∫

K

|x|4 ≤ 36n%4
n + n(n − 1)%4

n

= n2

(
1 +

35

n

)
%4

n

From this we can conclude that the integral
∫

K

(
|x|2
n

− %2
n

)2

is small, and

therefore that |x|2
n

is close to %2
n. Indeed,

0 ≤
∫

K

( |x|2
n

− %2
n

)2

=
1

n2

∫

K

|x|4 − 2

n
%2

n

∫

K

|x|2 + %4
n

=
1

n2

∫

K

|x|4 − 2

n
%2

nn%2
n + %4

n

=
1

n2

∫

K

|x|4 − %4
n

≤ 35

n
%4

n

The last inequality is true by (6.9).
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Finally by Chebychev’s inequality we have:

P

(∣∣∣∣
|x|2
n

− %2
n

∣∣∣∣ ≥ r

)
r2 = P

(( |x|2
n

− %2
n

)2

≥ r2

)

r2

≤
∫

K

( |x|2
n

− %2
n

)2

≤ 35

n
%4

n

Lemma 6.3 deals comfortably with the possibility that |x| might be too

large, but for technical reasons we need a stronger estimate from below. For-

tunately, this can be deduced from Lemma 6.3 using the logarithmic concavity

of the function

s 7→ V oln(K ∩ B(s
√

n))

where B(s
√

n) is the Euclidean ball of radius s
√

n.

Lemma 6.4 For r ≥ 1
n1/6 ,

P

( |x|√
n
≤ %n − r

)
≤
(

2

3

)n1/6r

Proof: Let %̂n, be such that P
(

|x|√
n
≤ %̂n

)
= 1/2. It is easy to see by Lemma

6.3 that |%n − %̂n| ≤ 1
2n1/6 . Combining this with Lemma 6.3 again, we get that

when n is large enough,

P

( |x|√
n
≤ %̂n +

1

n1/6

)
≥ 3

4
(6.10)

So, we have a point %̂n, at which the log-concave function f(s) = P
(

|x|√
n
≤ s
)

takes the value 1/2, and a point just a bit further on, where it takes a value
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close to 1. So, using the log-concavity of the function, we have an estimate for

its value at points before %̂n. Indeed, take s ≤ %̂n, and λ = n1/6(%̂n−s)

1+n1/6(%̂n−s)
. Then,

%̂n = λ

(
%̂n +

1

n1/6

)
+ (1 − λ)s

and thus by log-concavity

f(%̂n) ≥ fλ

(
%̂n +

1

n1/6

)
· f 1−λ(s)

But since f(%̂n) = 1/2 and f
(
%̂n + 1

n1/6

)
≥ 3/4 the above relation implies that

f(s) ≤
(

2

3

)1/(1−λ)

and hence that

P

( |x|√
n
≤ s

)
≤
(

2

3

)1+n1/6(%̂n−s)

Now we need only notice that for s ≤ %n − 1
n1/6 ≤ %̂n,

P

( |x|√
n
≤ s

)
≤
(

2

3

)1+n1/6(%̂n−s)

≤
(

2

3

)n1/6(%n−s)

and then put r = %n − s to get the required result.

Theorem 6.1 If gθ is the density of the marginal in direction θ, of the `n
p -ball,

then
∫

Sn−1

gθ(t)dσ(θ) −→ 1

%
√

2π
exp

(
− t2

2%2

)
as n → ∞

for each t, uniformly in p.

Proof: By (6.1), it is sufficient to prove that

∫

K

1√
2π

√
n

|x| exp

(
−t2

2

n

|x|2
)

−→ 1

%
√

2π
exp

(
− t2

2%2

)

67



for each t, uniformly in p. For this, we shall divide the set K into two

subsets and use appropriate techniques in each one. These are: K1 = K ∩
{∣∣∣ |x|√

n
− %n

∣∣∣ ≤ log n
n1/6

}
and K2 = K ∩

{∣∣∣ |x|√
n
− %n

∣∣∣ ≥ log n
n1/6

}
.

We shall show that the mass of K is concentrated in the first set, where

the integrated function is pretty smooth. By applying a Lipschitz estimate,

we shall see that the limit of the integral there, is the required Gaussian.

Although the integrand is not particularly well-behaved on K2, the measure

of K2 is small, so the integral will tend to zero.

Our aim is to prove the following two statements:

lim
n→∞

∫

K1

1√
2π

√
n

|x| exp

(
−t2

2

n

|x|2
)

=
1

%
√

2π
exp

(
− t2

2%2

)
(6.11)

lim
n→∞

∫

K2

1√
2π

√
n

|x| exp

(
−t2

2

n

|x|2
)

= 0 (6.12)

• For the first one, as was already mentioned, we shall use the fact that

the integrand is smooth in this set.

Let F (y) = y−1 exp
(
− t2

2y2

)
. The derivative of F , is bounded by t−2.

Therefore, if t is large, say t ≥ %n

3
, this gives an upper bound for the

derivative of order %−2
n . When t is small, the function F can have large

derivative, but only where y is small. More precisely, for y ≥ 2t, the

derivative is decreasing, so, one can check that in case that t ≤ %n

3
, the

derivative in a range near %n, has again a bound of order %−2
n . Thus, for

y ≥ %n − log n
n1/6 , we have a Lipschitz property:

|F (y)− F (%n)| ≤ c|y − %n|

68



where c is of order %−2
n . This applied in the integrals, gives:

∣∣∣∣
∫

K1

(
1√
2π

√
n

|x| exp

(
−t2

2

n

|x|2
)
− 1

%n

√
2π

exp

(
− t2

2%2
n

))∣∣∣∣ ≤

≤
∫

K1

∣∣∣∣
1√
2π

√
n

|x| exp

(
−t2

2

n

|x|2
)
− 1

%n

√
2π

exp

(
− t2

2%2
n

)∣∣∣∣

≤
∫

K1

c√
2π

∣∣∣∣
|x|√

n
− %n

∣∣∣∣

≤ log n

n1/6
· c√

2π
V oln(K1)

−→ 0

Since %n −→ % and V ol (K1) −→ 1 (by Lemma 6.3), we have that

∫

K1

1

%n

√
2π

exp

(
− t2

2%2
n

)
−→ 1

%
√

2π
exp

(
− t2

2%2

)

which completes the proof of (6.11).

• To prove (6.12), we notice that it is enough to prove:

lim
n→∞

∫

K2

√
n

|x| = 0 (6.13)

We divide K2 into three subsets. The first one has a small radius. This is

K2,1 = K∩
{

|x|√
n
≤ l√

n

}
where l is chosen such that vnln

√
n = 1, where vn

is the volume of the unit Euclidean ball. So, l is like a constant times
√

n.

The other two subsets of K2 are: K2,2 = K ∩
{

l√
n
≤ |x|√

n
≤ %n − log n

n1/6

}

and K2,3 = K ∩
{

|x|√
n
≥ %n + log n

n1/6

}

For the first one we have:

lim
n→∞

∫

K2,1

√
n

|x| ≤ lim
n→∞

∫

B(l)

√
n

|x|
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= lim
n→∞

vnn
√

n

∫

Sn−1

∫ l

0

1

u
· un−1du dσ(θ)

= lim
n→∞

vnln−1
√

n
n

n − 1

= 0

For the second one, we shall use Lemma 6.4. We have:

lim
n→∞

∫

K2,2

√
n

|x| ≤ lim
n→∞

√
n

l
V oln(K2,2)

≤ lim
n→∞

√
n

l
P

( |x|√
n
≤ % − log n

n1/6

)

≤ lim
n→∞

√
n

l

(
2

3

)log n

= 0

Finally, for the last one, we shall use Lemma 6.3:

lim
n→∞

∫

K2,3

√
n

|x| ≤ lim
n→∞

1

%n + log n/n1/6
V oln(K2,3)

≤ lim
n→∞

1

%n + log n/n1/6
· 35%4

n

n1/3 log4 n

= 0

(The choice of log n in the above argument is not crucial: we need a function

of n which tends to infinity, to handle the case of K2,2, but more slowly than

n1/6, to handle the case of K1.)

Remark

1. In the statement of Theorem 6.1 we write that the convergence is uni-

formly in “p”. As the proof stands, this would be clear, if all the %n’s

where uniformly bounded.
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But this is not difficult to see: From the discussion in the beginning of

this Chapter, we mentioned that there is a constant cp depending only

on p, such that as n −→ ∞,

%n −→ cp

∫ ∞

0

y2 exp

(
−yp

p

)
dy

As it can be observed by Stirling’s formula, these cp’s are bounded in p.

And since the integral is also bounded in p, we have what we want.
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Appendix

Using the notation introduced in Chapter 3, we prove in the Lemma below,

that the function 1− Yn(t)
Yn(1)

is very much like the function (1− tp)
n
p , a property

used in the proof of Theorem 3.1.

Its proof uses standard inequalities for log-concave functions.

Lemma A.1 For p ≥ 1 and 0 ≤ t ≤ 1,

(1 − tp)
n
p ≥ 1 − Yn(t)

Yn(1)
≥ 1

2p
(1 − tp)

n
p

Proof:

We shall use the form: 1 − Yn(t)
Yn(1)

=
∫ 1

t
(1−up)

n−1
p

∫ 1

0
(1−up)

n−1
p

For the first inequality, we have:

∫ 1

t

(1 − up)
n−1

p du = (1 − tp)
n−1

p

∫ 1

t

(
1 − up

1 − tp

)n−1

p

du

= (1 − tp)
n−1

p

∫ 1

t

(
1 − up − tp

1 − tp

)n−1

p

du

Now substituting xp = up−tp

1−tp
, we get:

∫ 1

t

(1 − up)
n−1

p du = (1 − tp)
n−1

p

∫ 1

0

(1 − tp)
xp−1

up−1
(1 − xp)

n−1

p dx
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≤ (1 − tp)
n−1

p
+1

∫ 1

0

(1 − xp)
n−1

p dx

≤ (1 − tp)
n
p

∫ 1

0

(1 − xp)
n−1

p dx

Which completes the proof of the first inequality.

For the second one, we shall use the following inequality which holds for a

decreasing log-concave function f , and for p ≥ 1:

p(f(t))p−1

∫ ∞

t

xp−1f(x)dx ≤ Γ(p + 1)

(∫ ∞

t

f(x)dx

)p

(A.1)

Applying this for f(x) = (1 − xp)
n−1

p , we get that:

Γ(p + 1)

(∫ 1

t

(1 − up)
n−1

p du

)p

≥ (1 − tp)
n−1

p
(p−1)

∫ 1

t

pup−1(1 − up)
n−1

p du

≥ (1 − tp)
n−1

p
(p−1)

∫ 1

tp
(1 − x)

n−1

p dx

= (1 − tp)
n−1

p
(p−1) p

n − 1 + p
(1 − tp)

n−1

p
+1

= (1 − tp)n p

n − 1 + p

But then,

∫ 1

t

(1 − up)
n−1

p du ≥ (1 − tp)n/p

(
p

n − 1 + p

)1/p

(Γ(p + 1))−1/p

≥ (1 − tp)n/p

(
p

n − 1 + p

)1/p
1

p
(A.2)

On the other hand,

∫ 1

0

(1 − up)
n−1

p du =
1

p
· B
(

1

p
, 1 +

n − 1

p

)

=
Γ
(
1 + 1

p

)
Γ
(
1 + n−1

p

)

Γ
(
1 + n

p

)

≤
Γ
(
1 + n−1

p

)

Γ
(
1 + n

p

) (A.3)
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Applying Lemma A.2 with x = n
p

and α = 1
p

we get

Γ
(
1 + n−1

p

)

Γ
(
1 + n

p

) ≤
(

n

p

)−1/p

Thus, by (A.3)
∫ 1

0

(1 − up)
n−1

p du ≤
(

n

p

)−1/p

This, combined with (A.2), gives:

∫ 1

t
(1 − up)

n−1

p du
∫ 1

0
(1 − up)

n−1

p du
≥ (1 − tp)n/p

(
n

p

)1/p(
p

n − 1 + p

)1/p
1

p

= (1 − tp)n/p

(
n

n − 1 + p

)1/p
1

p

≥ 1

2p
(1 − tp)n/p

which is what we want.

In the next Lemma we give a property for Euler’s Gamma function Γ, used

to prove an accurate upper bound for the integral
∫ 1

0
(1 − up)

n−1

p du

Lemma A.2 For all x ≥ 0 and 0 ≤ α ≤ 1, Euler’s Gamma function Γ,

satisfies:

Γ(1 + x − α)

Γ(1 + x)
≤ x−α

Proof : We shall use Gauss’ formula for the Gamma function:

Γ(x) = lim
n→∞

n! · nx

x(x + 1) · · · (x + n)

Then,

Γ(1 + x − α)

Γ(1 + x)
= lim

n→∞

[
nα

(
1 − α

x + 1

)
· · ·
(

1 − α

x + n

)]−1
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But since

lim
n→∞

[
nα

(
1 − α

x + 1

)
· · ·
(

1 − α

x + n

)]−1

=

= lim
n→∞

[
(x + n)α

(
1 − α

x + 1

)
· · ·
(

1 − α

x + n

)]−1

it is enough to show that

(
1 − α

x + 1

)
· · ·
(

1 − α

x + n

)
≥
(

x

x + n

)α

(A.4)

Indeed, using the fact that 1− αs ≥ (1− s)α for all 0 ≤ s ≤ 1 and 0 ≤ α ≤ 1,

we get:

(
1 − α

x + 1

)
· · ·
(

1 − α

x + n

)
≥

[(
1 − 1

x + 1

)
· · ·
(

1 − 1

x + n

)]α

=

(
x

x + 1
· · · x + n − 1

x + n

)α

=

(
x

x + n

)α
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