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1. Introduction

The definition of the Banach—Mazur distance between symmetric convex bodies can
be extended to the nonsymmetric case as follows [Gr]: Let K and L be two convex
bodies in R". Their geometric distance is defined by

d(K, L) = inf{ab: (1/b)L € K C aL}. (1)

If z1, zo € R", we consider the translates K — z; and L — z; of K and L, and their
distance with respect to zy, z;,

d., (K, L) = inf{d(T(K — ), L — 2)}, )

where the inf is taken over all invertible linear transformations 7" of R”". Finally, we
let zy, z; vary and define

d(K, L) =inf{d., .,(K, L):z|, z» € R"}. 3)

John’s theorem [J] provides a first estimate for d(K, L). If K is any convex body in
R and E is its maximal or minimal volume ellipsoid, then d. .(K, E) < n, where z is
the center of E. Actually, the distance between the simplex and the ball is equal
to n, and the simplex is the only body with this property [P]. It follows that the
distance between any two convex bodies is at most 7. Rudelson [R] has recently
proved that d(K, L) < cn*/3 logﬁn for some absolute constants ¢, f > 0 (see also
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recent work of Litvak and Tomczak—Jaegermann [LTJ]). A well-known theorem of
Gluskin [G]] shows that d(K, L) can be of the order of n even for symmetric bodies
K and L.

In this paper we study the maximal volume position of a body L inside K: we say
that L is of maximal volume in K if L € K and, for every w € R" and every volume
preserving linear transformation 7' of R”, the affine image w+ T(L) of L is not
contained in the interior of K. A simple compactness argument shows that for every
pair of convex bodies K and L there exists an affine image L of L which is of maximal
volume in K. Note that the maximal volume position of L inside K is not unique, as it
can be seen by the example of a simplex inside the cube.

Our main result is the following theorem:

THEOREM. Let L be of maximal volume in K. If z € int(L), we can find contact

points vy, ..., v, of K —z and L — z, contact points uy, ..., u, of the polar bodies
(K —2)° and (L—2)°, and positive reals i, ...,Ay such that: ) Jju;=o,
(uj, Vj) = 1, and
m
Id = /ljuj R v;. “4)

j=1

We shall prove the above fact under the assumption that both K and L are smooth
enough. The theorem may be viewed as a generalization of John’s representation of
the identity even in the case where L is the Euclidean unit ball. This generalization
was observed by V. D. Milman in the case where K and L are o-symmetric and
z = o0 (see [TJ], Theorem 14.5).

Using the theorem, we give a direct proof of the fact that d(K, L) < n when both K
and L are symmetric, and we obtain the estimate d(K, L) < 2n — 1 when L is sym-
metric and K is any convex body (this was recently proved by Lassak [L]).

Note that the theorem holds true for any choice of z € int(L). In Section 3 we prove
an extension to the case z € bd(L). Also, assuming that L is a polytope and K has C>
boundary with strictly positive curvature, we show that the center z may be chosen so
that )" Au; =0 =73 ;.

Using the maximal volume position of L inside K, one can naturally extend the
notion of volume ratio to an arbitrary pair of convex bodies. We define

1

IKT\"

Vr(K, L) = (T , (5)
IL]

where L is an affine image of L which is of maximal volume in K (by | - | we denote

n-dimensional volume). In Section 4, we prove the following general estimate:

THEOREM. Let K and L be two convex bodies in R". Then,
vr(K, L) < n. (6)
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The same estimate can be given through known results on vr(K, D,) and vr(D,, K),
where D, is the Euclidean unit ball. Ball [Ba] proved that vr(K, D,) is maximal when
K is the simplex S,, and noticed that from the reverse Brascamp-Lieb inequality
(which was later proved in [Bar]) it would follow that vr(D,, K) is also maximal
for S,. It follows that

vr(K, L) < vi(K, D,)vr(D,, L) < vr(S,, D,)vr(D,, S,) = n.

However, our proof is direct and might lead to a better estimate; it might be true that
vr(K, L) is always bounded by c./n.

2. The Main Theorem and Distance Estimates

We assume that R” is equipped with a Euclidean structure (-, -), and denote the
corresponding Euclidean norm by |-|. We write D, for the Euclidean unit ball,
and S"~! for the unit sphere.

If W is a convex body in R" and z € int(W), we define the radial function p,(z, -)
of W with respect to z by

pw(z,0) =max{/l > 0:z+ 10 € W} (1)
for 0 € S""!, and extend this definition to R"\{z} by

1
pw(zx) = —py(z,0), ()

where x =z+ 10, t> 0 and 0 € S"~'. If 0 € S"~!, we will write py(z, 0) instead of
pw(z, z+ 0) (this will cause no confusion).
The polar body W* of W with respect to z € int(W) is the body

Wi=W—-2°={peR"(y,x—z) <lforall x e W} 3)

(some authors write W= for (W — z2)° + z).
Let o denote the origin. Since py(z, X) = py_.(0, x — z), the support function /-
of W* satisfies

1
pW(Zv X)

for all x € R"\{z}. Note that the definition of the polar set W~ makes sense for
z € bd(W), but then W* may be unbounded in some directions.

Recall that, if o €int(W), W is strictly convex and hjy is continuously
differentiable, then Viy (0) is the unique point on the boundary of W at which
the outer unit normal to W is 0, and Vhy (10) = Vhy(0) for all 1 > 0.

With these definitions, we have the following description of the maximal volume
position of L in K:

hW:(X — Z) =

4)
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LEMMA 2.1. Let K and L be two convex bodies in R", with L C K. Then, L is of
maximal volume in K if and only if, for every z € L, for every w € R" and every volume
preserving T, there exists 0 € 8"~ such that

oz 24w+ T(py . 00) < 1. o ©®

We assume that K is smooth enough: we ask that it is strictly convex and its support
function /g is twice continuously differentiable on R” \ {0}. Under this assumption,
we have that hg: is twice continuously differentiable on R" \ {0} for every z € int(K).

LEMMA 2.2. Let L be of maximal volume in K, and z € L Nint(K). Then, for every
w e R"andevery S € L(R", R")we can find 0 € S"~" such that p;(z, 0) = px(z, 0) and

s
(w4 iz, 0)5(0)) > tr? (6)

Proof. We follow the argument of [GM]. Let w € R" and S € L(R", R"). If ¢ > 0 is
small enough, then T, = (I + &S)/[det(I + £S)]'/" is volume preserving, hence, using
(4) and Lemma 2.1 for T, and sw, we find 0, € S"~! such that

i (8w + Tu(p1(2.06,)) > 1. )

Since
[det(7 + eS)]" =1 + fs% +0(),

we get

trS
hg: (pL(Z, 0,)0, + ew + ep, (=, eg)S(eg)) > 1+ a% +O(). (8)

Since L € K, we have hg:(p;(z, 0.)0,) = p;(z, 0.)/pk(z, 0,) < 1, and the subadditivity
of hg- gives

hi: (w e 08)5(08)) > ? +0(e). ©)

By compactness, we can find ¢, — 0 and 0 € S"~! such that 0,, — 0. Then, taking
limits in (9), we get

S
hg- (w +p1(z, 0)5(9)) > tr? (10)

and taking limits in (7) we see that hg:(p;(z, 0)0) = 1, which forces p,(z,0) =
pK(Zv 9) |:|

Making one more step, we obtain the following condition:
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LEMMA 2.3. Let L be of maximal volume in K, and z € L Nint(K). Then, for every
we R"andevery T € L(R", R")we can find 0 € S"~" such that p;(z, 0) = pg(z, 0) and

(Vi (0),w+ pitz OT(O) > T (11)

Proof. Let T € L(R", R"), and define S, =1 +¢T, ¢ > 0. By Lemma 2.2, we can
find 0, € $"~! such that pg(z, 0,) = p;(z, 0,) and

hi=(ew + pg(z, 0,)0, + epx(z, 0.)T(0,))
12
>tr(1+gT):1+8£. (12)

The left-hand side is equal to

hg=(p(z, 0,)0,) + e(Vhg=(0,), w4 pg(z, 0,)T(0,)) + 0(82)

. (13)
=1+ &(Vhg:(0:), w + pg(z, 0.)T(0;)) + O(&).
Therefore,
trT
(Vhig=(0;), w+ pg(z, 0,)T(0,)) = - 7t O(e). (14)

Choosing again ¢,, — 0 such that 0,, — 0 € S"~!, we see that px(z, 0) = p;(z, 0) and
0 satisfies (11). [

Lemma 2.3 and a separation argument give us a generalization of John’s represen-
tation of the identity:

THEOREM 2.4. Let K be smooth enough, L be of maximal volume in K, and
ze LNint(K). There exist m <n*>+n+1 vectors 0i,...,0, € S"' such that
px(2,0) =pr(z,0;) and A1, ..., Am > 0, such that:

M) 24 Vhi=(6)) = o,
(ii) 1d =3 A4l(Vhx=(0)) ® (pk(z. 0))0))].

Proof. We identify the affine transformations of R" with points in R”*" and
consider the set

C= Co{[VhK:(H) ® py(z, 0)0] + Vig-(0):0 € S, pr(z, 0) = p, (=, 9)]. (15)

Then, C is a compact convex set with the Euclidean metric, and we claim that
1d/n € C. If not, there exist w € R” and T € L(R", R") such that

(d/n, T +w) > <[VhK:(0) ® p(z, 0)0] + Vig-(0), T + w>, (16)
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whenever pg(z, 0) = p;(z, 0). But, (16) is equivalent to

% > (Vhg:(0), w + pg(z, 0)T(0)), (17)

and this contradicts Lemma 2.3.
Carathéodory’s theorem shows that we can find m < n*> + n + 1 and positive reals
A, ..., Ay such that

1d =" % ([Vhx:(0) @ px (. 0901 + Vh-(6))). (18)
=
for 0y,...,0, € S with pg(z, 0,) = p,(z, 0;). This completes the proof. O

Remark. Assume that L is also smooth enough. Let 0 € S"~! be such that
px(z,0) = p;(z,0). Observe that

(Vhi:(0), px(z. 0)0) = py(=, O)h:(0) = 1. (19)
Also, x = Vhy:(0) is the unique point of L* for which (x, 0) = h;-(0) = hg-(0). Since
(Vhg:(0), 0) = hg-(0) and Vhg:(0) € K* C L*, we must have

Vhi:(0) = Vh-(0). (20)

Hence, the theorem can be stated in the following form:

THEOREM 2.5. Let K and L be smooth enough, and L be of maximal volume in K.
For every z € int(L), we can find contact points vy, . .., v, of K — zand L — z, contact
points uy,...,u, of K* and L*, and positive reals Ay,..., Ay, Such that:
Y=o, (uj,v;) =1, and

Id = Z/ljlzlj@l/’j. (21)

J=1

O

Remark. The analogue of the Dvoretzky—Rogers lemma [DR] in the context of
Theorem 2.5 is the following: If F is a k-dimensional subspace of R" and Pr denotes
the orthogonal projection onto F, then there exists j € {1, ..., m} such that

k
(Pr(u;), Prp(v))) = e

This can be easily checked, since

m

k=trPr = Zij(Pp(uj), Pr(v)),
=

J=

and )" 4 =n.
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As an application of Theorem 2.4, we give a direct proof of the fact that the dia-
meter of the Banach-Mazur compactum is bounded by #:

PROPOSITION 2.6. Let K and L be symmetric convex bodies in R". Then,
dK,L)<n
Proof. We may assume that K and L satisfy our smoothness hypotheses, and that

K is symmetric about o. Let L; be an affine image of L which is of maximal volume
in K.

Claim. L, is also symmetric about o.
Let z be the center of L;. Then L; =2z — L; C K and the symmetry of K shows
that L; — 2z C K. It follows that

_Li+ i =27

L=L1—Z B —

K, (22)

and L; — z is o-symmetric. If z # o, we obtain a contradiction as follows: we define a
linear map 7 which leaves z' unchanged and sends z to (1+ )z, where
0 < o < |z|?/hz,_.(z). One can easily check that

T(Li—z)Zco(Ly, L1 —22) CK and |T(L;—2)|=(+o)Li] > |Ly]-

We write L for L;. Let x € R" and choose z =w =0 and T(y) = (Vh-(x), y)x in
Lemma 2.3. Then there exists 0 € S"~! such that pg(o, 0) = p; (o, 0) and

hre
(V- (0), (T, p1 (0, 0)0)x) > Ln(x). (23)
But, Vi-(x) € L° and p; (0, 0)0 € L. Since L is o-symmetric, we have
[(Vhio(x), pr(o, 0)0)] < 1. (24)

Using now the o-symmetry of K and the fact that Vig-(0) € K°, from (23) and (24)
we get

e () > . (25)
Therefore, L° € nK°, and this shows that KX C nL. O

We now assume that L is symmetric and K is any convex body:

PROPOSITION 2.7. Let L be a symmetric convex body and K be any convex body in
R”. Then, d(K, L) <2n—1.

Proof. We may assume that L is of maximal volume in K and L is symmetric
about o.
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Let d > 0 be the smallest positive real for which h;-(y) < dhg-(p) for all y € R".
Then, duality, the symmetry of L and the fact that L C K show that
hg(—x) < dhp(—x) = dhy(x) < dhg(x) for every x € R”.

We define T'(y) = (nVhr-(x), y)x and w = yx, where y € [0, n) is to be determined.
From Lemma 2.3, there exists 0 € $"~! such that pg(o, 0) = p, (0, 0) and

<VhKo(0), X + n(Vhi-(x), pL (0, 0)9)x> > M = Iy (). (26)

Since Vhy-(x) € L°, p;(0,0)0 € L and L is o-symmetric, we have

(VA (x). 0. 0)8)] < 1,
therefore

Y —n <y +n(Vhr(x), pr(o, 0)0) <y +n. 27
Let s = (Vhi-(x), p,(0, 0)0). Since Vhg.(x) € K°, from (26) and (27) we get

hie(x) < (7 + mhg-(x), (28)
if y+ns>0, and

hi-(x) < (n — y)dhg-(x), (29)
if y +ns < 0. It follows that

hio(x) < max{y + n, (n — y)d}hg-(x). (30)

This shows that d < max{y + n, (n — y)d}, and choosing y = n(d — 1)/(d + 1) we get
d <2n—1. Hence, L° € (2n — 1)K*° and the result follows. O

3. Choice of the Center

In this section we study the case where L is a polytope with vertices vy, ..., vy, and K
has C? boundary with strictly positive curvature (K € Ci). Then, we can strengthen
Theorem 2.5 in the following sense:

THEOREM 3.1. Let L be of maximal volume in K. Then, there exists
z € L\{vi1, ..., vy} for which we can find Ay,...,2xy =20, and uy, ...,uy € bd(K?)
so that

) Yu=o0 Yiv=cz
2) (W,vi—zy=1forallj=1,...,N.
3 =YY, ju®v.
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Proof. We may assume that o € int(L). By Theorem 2.4 and our hypotheses about
K, for every z € Ly:= L\ {v, ..., vy} there exist representations of the form

N
Id = iju]’ ® Vj,
=1

where 4; > 0, u; € bd(K?) with (u;,v; —z) =1, and Zj'il Zjuj = 0. Note that the
representation of the identity follows from Theorem 2.4 because of the condition
Sl Aty = 0.

We define a set-function ¢ on Loy, setting ¢(z) to be the set of all points
(1/n) Zszl /jv; € L which come from such representations (with respect to z).
The set ¢(z) is clearly nonempty, convex and closed.

Let s € (0, 1). We define ¢, on Ly with ¢(2) = s¢(2), and g;: Ly — RT with

gs(2) = d(z, ¢(2)) = inff{|z — w|: w € ¢y(2)}. (D
It is easily checked that ¢, is upper semi-continuous and g; is lower semi-continuous.

LEMMA 3.2. For every s € (0, 1), there exists z € sL such that z € ¢ (z).

Proof. Assume otherwise. Since ¢ (z) € sL for all z € Ly, this means that g,(z) > 0
on Ly. We set r = (1 +5)/2, and consider the restriction of ¢, onto rL. Since g; is
lower-semicontinuous, there exists ¢ = ¢(r, s) > 0 such that g(z) > ¢ for all z € rL.

On the other hand, ¢, is upper-semicontinuous, convex-valued with bounded
range. Therefore, ¢, admits approximate continuous selections: By a result of Beer
[Be] (see also [RW], pp. 195), for every ¢ > 0 there exists a continuous function
h.:rL — R" so that

d(hy(2), s¢(2)) < &. ()

Let ¢ = ¢(r, s) > 0 be such that sL + ¢D, C rL. Letting ¢ = (1/2) min{g, ¢} we find

continuous /: rL — rL satisfying (2). Brouwer’s theorem shows that / has a fixed
point z € rL. But then,

q < d(z,59(2)) = d(h(z), s¢(2)) <,
which is a contradiction. This completes the proof. O

We apply Lemma 3.2 for a sequence s; € (0, 1) with s — 1. For each k& we find
zx € spL and );k) > 0 such that

N
1d=Y AP @, 3)
=1

J=
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where u(k) € bd(K*) is uniquely determined by ( —zxy =1, and
7 o~ 0 (0
= Sk £ s ;\.- ;0 = 0. 4
Zk S];nvj j;:ju] 0 4)

Passing to a subsequence, we may assume that zy — z € L. If z is not one of the
vertices of L, then u( ) u;, where u; € bd(K?) and (u;, v; — z) = 1. Passing to further
subsequences we may assume that A "(k) — /J; = 0. Since sy — 1, (3) and (4) imply

N
Id = Z/ljuj ® Vi, (5)

=1
and

N

p A
z=) v Y du=o. (6)
= =

This is exactly the assertion of the Theorem, provided that we have proved the
following:

CLAIM 3.3. Let s €(0,1) with s — 1, and zy € sidp(zx). If zik — z, then
zé{vi, ..., vwh

Proof. We assume that z; satisfy (3) and (4) and z; — v;. Our assumptions about
K imply that K" is unbounded only in the direction of N(v;), where N(v;) is the
unit normal vector to K at v;. For large &, z; is away from vy, ..., vy, therefore
uj(k) —u;, j=2,...,N, where u; is the unique point in bd(K"™) for which
(uj, v —z) = 1.

Since (u](-k)), j = 2 is bounded and Z/A; 1 4 = n, (4) shows that

129, = | Z 29040

remains bounded. Hence, passing to a subsequence we may assume that

}n(lk)u(lk) — wy, and )v](k) — J; for all j=1,..., N. This means that
N
Id=w ®v + Z Aju; ® vy, (N
=2
and
N, N
_\% =
v = Z p Vi, wy + Zijuj 0. (8)
j=1 J=2
Since vy is a vertex of L, we must have A, = ... = Ay = 0. Then, w; = o, and (7) takes

the form Id = 0, which is a contradiction. O



JOHN’S THEOREM FOR CONVEX BODIES 73

Actually, the argument we used for the proof of Claim 3.3 shows the following
extension of Theorem 2.4:

PROPOSITION 3.4. Let K, L be smooth enough and assume that L is of maximal
volume inside K. For every z € bd(K)Nbd(L), there exist mo <m<n*>+n+1,

contact points vy, ..., vy of K and L, contact points uy, ..., un, of K* and L7, and
nonnegative numbers Ay, ..., Jmy, Omg+1s - - -, Om SO that:

1 (w,vi—z)= 1 forall j=1,2,...,my,

(2) (4N(2),vj—z) =0 for all j =mg + 1, m,

3) ld=Y) (lz,u,®v,+N(z)®(Z’”mo+1°</vJ)

where N(z) is the unit normal vector of K at z.

Sketch of the proof. Let z € bd(K) N bd(L), and consider a sequence z; € int(L)
with z; — z. Applying Theorem 2.4, for each k we find )(k) > 0, contact points
(k) of K and L, and contact points u( ) of K* and L* so that

J J
J=1 J=1

N N
S =0, (WP~ z) =1 and 1d=)iul @y,
We may assume that N =n?> +n+ 1 for all k.

Passing to subsequences we may assume that i}k) — Jj and vj(k) — vj as k — oo,
where 4; > 0 and v; are contact points of K and L. We may also assume that there
exists my < N such that u( ) u; if j < myp, and |u( )| — o0 if j > my.

Let N(z) be the umt normal vector to K at z. It is not hard to see that for all j > my,
the angle between u ) and N(z) tends to zero as k — oo. Using the fact that
Z/ | /lfk) _U‘) =0, wWe then see that for large k

9k 1060, (K k) (K
a0 <1 T A =1 5 o
= J>nyg Jj<my

(k) (k)

and this quantity remains bounded, since all 4;” and u;
Therefore, we may also assume that /I(k) (k) — oiN(2), j > mo.
Passing to the limit we check that (u,, v, zy =1, j <my, and

(j < mgp) converge.

my N
ld=) 4u®v+NG>)® ( > %'V_/)~ (10)

j=1 j=n+1

Finally,

(N (z), v; — z) = l1m)(k)< & v](.k) -z > = 11m i(k) =0
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for all j > my, and
mo N
D A+ ( > %/)N(Z) =o.
j=1 j=mo+1

Ignoring all j’s for which «; = 0, we conclude the proof. O

4. Volume Ratio
In this Section we give an estimate for the volume ratio of two convex bodies:
THEOREM 4.1. Let L be of maximal volume in K. Then, (|K|/|L|)"" < n.

Proof. Without loss of generality we may assume L is a polytope and K € C2, and
using Theorem 3.1 we may assume that o € L Nint(K), and

m

Id = Zijuj ® Vi, (1)
J=1

where A4, >0, wui,...,u, € bd(K°), vi,...,v, are contact points of K and L,

(j, vj) = 1,and 37, Jju; = 0 = 3" | 4;v;. This last condition shows that m > n + 1.

Since u; € K°, j=1,...,m, we have the inclusion
KCU={x{xu)<1,j=1,...,m} (2)

Observe that U is a convex body, because ) Z;u; = 0. On the other hand, v, € L,
j=1,..., m. Therefore,

LD V:i=co{vi,..., V) (3)
It follows that

K| _ U]
Ly 4
LI~ [V @

We define % € R""! by

n .
W:;Iﬂ_WD’JZL””m' (%)

Then, we can estimate | V| using the reverse form of the Brascamp-Lieb inequality
(see [Bar]):

LEMMA 4.2. Let

det(Z;”:1 AoV ® vj>

7
H;nzl “j/

>0, 7=1,2,...,m¢.

D; = inf{
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Then, the volume of V satisfies the inequality

I’l+1 ntl D;
= (M) ©)
n n!
Proof. Let
infiZ;":l o =0and x =), ocﬁ),»}, if such o; exist,
Ny(x) =
400, otherwise.
Let also C =co{—vi, —v2, ..., —Vu}.
Claim. If x = (y,r) for some y € R" and r € R, then
_Ny(x _ntl,.
e V) < Lypera)Xir>01€ 7 - (7

[If r < 0 then Ny (x) = +o0 and the inequality is true. Otherwise, let o; > 0 be such
that x =" o5 and Y ', 0 = Ny(x). Then, it is immediate that Ny (x) =
((n+1D/n)r=0and y = (n/(n+ 1)) X" a:(—v;) € rC. From this (7) follows.]

Integrating the inequality (7) we get

n+l1
/ e—NV<X>dx<n!< j_l> V.
Rrﬁ»l n

We now set d; = ((n + 1)/n)}v_,' and apply the reverse form of the Brascamp-Lieb
inequality to the left hand side integral:

m
eV dx = sup l_[ e % dx
R R % >0 =1

et Y

- 4

—o;/d; .

- /H+1 Slrlnp 1_[(e j/ jl{aj 20})
R™ x= E =1 o;V; j=1

m 00 d;
>V [[([Terar) = v
j=1 30

x=

From this (6) follows. O

We now turn to find an upper bound for |U|: as above, let d; = ((n + 1)/n)2j and set
;= (—u;, (1/n)) for j=1,....m.
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LEMMA 4.3. The volume of U satisfies the inequality

1 (n + 1)l1+1

< —
U1 S ®)
where
D, — inf{det(z d/%‘;‘j ® i) Loy > 0}. )
H“j

Proof. We apply the Brascamp-Lieb inequality [BL] (see also [Bar]) in the spirit of
K. Ball’s proof of the fact that among all convex bodies having the Euclidean unit
ball as their ellipsoid of maximal volume, the regular simplex has maximal volume
[Ba].

For each j =1,...,m, define f;: R — [0, 00) by fi(t) = €™y o)(?), and set

F(x) = [ /Gt x4, xe R™ (10)
J=1

The Brascamp-Lieb inequality gives

1 m d; 1
[oroae< 72 1([1) =75 a

Asin[Ba], writing x = (y,r) € R" x R, we see that F(x) = 0ifr < 0. Whenr > 0, we
have F(x) # 0 precisely when y € (r/n)U, and then, taking into account the facts that
Y Juj=o0and ) d; =n+1, we see that F is independent of y and equal to

F(x) =exp(—r(n+ 1)/n). (12)
It follows from (11) that

Lo /Oo exp(—rn+ Dym () 1oidr = 01— O (3
D,j, = 0 p n - (}’l + 1)n+1 .
Combining the two lemmata, we get
K] n"
— < . 14
LI~ /D;iDs (19

Observe that #;, v; and d; satisfy (i;,v;) =1, j=1,...,m. Using the fact that
Yty Ay =0 =37, 4vj, we check that

Thus, in order to finish the proof of Theorem 4.1 it suffices to prove the following
proposition.
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PROPOSITION 4.4. Let Ay,...,2n, >0, uy,...u, and vy,...,v, be vectors
satisfying (u;, v;) =1 for all j =1,...m and

Id =

Ajuj @ ;. (15)
j=1

Then D,D, > 1.

Proof. ForI € {1,2,...,m} weuse the notation 1; = [[,.; 4i, &y = [[;; %, and for
I’s with cardinality n, we write U; = det(u;:i € I) and V; = det(v;:i € I). Moreover,
we write (AU); for det(Au;:i € I).

Applying the Cauchy-Binet formula we have

det(i;ﬁaj”j@)vj‘): Z o (VAU)(VAV),. (16)

j= |I|=n
J 1 I1S{1,2,....m}

But

> Wiuy,Wivy, = det(i At ® vj> = det(Id) = 1.
j=1

Hence, applying the arithmetic-geometric means inequality to the right side of (16)
we deduce that

Y (iU, = [ A0

|=n ||=n
1S{1.2,...,m) 1S(1.2,...,m}

L D (AL N VA oY
=[1s" :
j=1

Observe now that the exponent of «; in the above product equals /;:

Y. VAU Wiy =) (VAU Wvy = Y (VAU (Viv),

Jel, I|l=n [|=n J&l, l=n
m
= det (Z l/‘uj X V,) — det(l — Aj”j ® V,)
=1
=1

J>

since (u;, v;) = 1. Thus, we have shown that

o (17)
1

m
det (Z Aot & vj) =

m
j=1 =

J
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Now, for any V> 6; > 0 we have

det (Z Ayt @ u/-) det (Z 2j0;v; ® vj)
J=1 J=1
=D iU Y sV

T=n =
By the Cauchy-Schwarz inequality this is greater than
2
<Z INIRY, V1> :
=

Apply now (17) to get
det( D7 Aipuy @ uy ) det( Y, 2;0,v; @ v;
( % lmjjz-] J) ( j ;JJAJ J) -
Hj:l Vj/ Hj:l 5j/

completing the proof. O

Remark. A different argument shows that vr(K, S,) < c4/n for every convex body
K in R", where ¢ > 0 is an absolute constant.

Without loss of generality, we may assume that K is of maximal volume in D,,.
Then, John’s theorem gives us 4, ..., 4, > 0 and contact points uy, ..., u, of K
and D,, such that

m

Id = Ziju]' ® Mj.

Jj=1

The Dvoretzky—Rogers lemma [DR] shows that we can choose uy, . .., u, among the
u;’s so that

n—i+1\'"?
span{uy:s<iyt Uil = — ) - i= 2,...,n.

| P

Therefore, the simplex S = co{o, uy, ..., u,} has volume

1 n—i+1\'? 1
N = :
151 n! [2( n > (nlnm)!/?

and S € K C D,. It follows that

1D\ _ @) ny/m
K’ Sl’l ~ ~~ 1.
vl )<(|S|) S et

< ea/n.
This supports the question if vr(K, L) is always bounded by c\/n.
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