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Abstract. We provide a generalization of John's representation of the identity for the maximal
volume position of L inside K, where K and L are arbitrary smooth convex bodies in Rn. From
this representation we obtain Banach^Mazur distance and volume ratio estimates.
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1. Introduction

The de¢nition of the Banach^Mazur distance between symmetric convex bodies can
be extended to the nonsymmetric case as follows [Gr]: Let K and L be two convex
bodies in Rn. Their geometric distance is de¢ned by

~d�K;L� � inffab: �1=b�L � K � aLg: �1�
If z1; z2 2 Rn, we consider the translates K ÿ z1 and Lÿ z2 of K and L, and their
distance with respect to z1; z2,

dz1;z2 �K;L� � inff ~d�T �K ÿ z1�;Lÿ z2�g; �2�
where the inf is taken over all invertible linear transformations T of Rn. Finally, we
let z1; z2 vary and de¢ne

d�K;L� � inffdz1;z2 �K;L�: z1; z2 2 Rng: �3�

John's theorem [J] provides a ¢rst estimate for d�K;L�. If K is any convex body in
Rn and E is its maximal or minimal volume ellipsoid, then dz;z�K;E�W n, where z is
the center of E. Actually, the distance between the simplex and the ball is equal
to n, and the simplex is the only body with this property [P]. It follows that the
distance between any two convex bodies is at most n2. Rudelson [R] has recently
proved that d�K;L�W cn4=3 logb n for some absolute constants c; b > 0 (see also
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recent work of Litvak and Tomczak^Jaegermann [LTJ]). A well-known theorem of
Gluskin [Gl] shows that d�K;L� can be of the order of n even for symmetric bodies
K and L.

In this paper we study the maximal volume position of a body L inside K : we say
that L is of maximal volume in K if L � K and, for every w 2 Rn and every volume
preserving linear transformation T of Rn, the af¢ne image w� T �L� of L is not
contained in the interior of K . A simple compactness argument shows that for every
pair of convex bodiesK and L there exists an af¢ne image ~L of Lwhich is of maximal
volume inK . Note that the maximal volume position of L inside K is not unique, as it
can be seen by the example of a simplex inside the cube.

Our main result is the following theorem:

THEOREM. Let L be of maximal volume in K. If z 2 int�L�, we can ¢nd contact
points v1; . . . ; vm of K ÿ z and Lÿ z, contact points u1; . . . ; um of the polar bodies
�K ÿ z�� and �Lÿ z��, and positive reals l1; . . . ; lm, such that:

P
ljuj � o,

huj; vji � 1, and

Id �
Xm
j�1

ljuj 
 vj : �4�

We shall prove the above fact under the assumption that both K and L are smooth
enough. The theorem may be viewed as a generalization of John's representation of
the identity even in the case where L is the Euclidean unit ball. This generalization
was observed by V. D. Milman in the case where K and L are o-symmetric and
z � o (see [TJ], Theorem 14.5).

Using the theorem, we give a direct proof of the fact that d�K;L�W nwhen both K
and L are symmetric, and we obtain the estimate d�K;L�W 2nÿ 1 when L is sym-
metric and K is any convex body (this was recently proved by Lassak [L]).

Note that the theorem holds true for any choice of z 2 int�L�. In Section 3 we prove
an extension to the case z 2 bd�L�. Also, assuming that L is a polytope and K has C2

boundary with strictly positive curvature, we show that the center zmay be chosen so
that

P
ljuj � o �P ljvj.

Using the maximal volume position of L inside K , one can naturally extend the
notion of volume ratio to an arbitrary pair of convex bodies. We de¢ne

vr�K;L� � jK j
j ~Lj

� �1
n

; �5�

where ~L is an af¢ne image of L which is of maximal volume in K (by j � j we denote
n-dimensional volume). In Section 4, we prove the following general estimate:

THEOREM. Let K and L be two convex bodies in Rn. Then,

vr�K;L�W n: �6�

64 A. GIANNOPOULOS ET AL.



The same estimate can be given through known results on vr�K;Dn� and vr�Dn;K�,
where Dn is the Euclidean unit ball. Ball [Ba] proved that vr�K;Dn� is maximal when
K is the simplex Sn, and noticed that from the reverse Brascamp^Lieb inequality
(which was later proved in [Bar]) it would follow that vr�Dn;K� is also maximal
for Sn. It follows that

vr�K;L�W vr�K;Dn�vr�Dn;L�W vr�Sn;Dn�vr�Dn;Sn� � n:

However, our proof is direct and might lead to a better estimate; it might be true that
vr�K;L� is always bounded by c

���
n
p

.

2. The Main Theorem and Distance Estimates

We assume that Rn is equipped with a Euclidean structure h�; �i, and denote the
corresponding Euclidean norm by j � j. We write Dn for the Euclidean unit ball,
and Snÿ1 for the unit sphere.

If W is a convex body in Rn and z 2 int�W �, we de¢ne the radial function rW �z; ��
of W with respect to z by

rW �z; y� � maxfl > 0: z� ly 2W g �1�
for y 2 Snÿ1, and extend this de¢nition to Rnnfzg by

rW �z; x� �
1
t
rW �z; y�; �2�

where x � z� ty, t > 0 and y 2 Snÿ1. If y 2 Snÿ1, we will write rW �z; y� instead of
rW �z; z� y� (this will cause no confusion).

The polar body Wz of W with respect to z 2 int�W � is the body

Wz � �W ÿ z�� � fy 2 Rn: hy; xÿ ziW 1 for all x 2W g �3�

(some authors write Wz for �W ÿ z�� � z).
Let o denote the origin. Since rW �z; x� � rWÿz�o; xÿ z�, the support function hWz

of Wz satis¢es

hWz �xÿ z� � 1
rW �z; x�

�4�

for all x 2 Rnnfzg. Note that the de¢nition of the polar set Wz makes sense for
z 2 bd�W �, but then Wz may be unbounded in some directions.

Recall that, if o 2 int�W �, W is strictly convex and hW is continuously
differentiable, then rhW �y� is the unique point on the boundary of W at which
the outer unit normal to W is y, and rhW �ly� � rhW �y� for all l > 0.

With these de¢nitions, we have the following description of the maximal volume
position of L in K :
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LEMMA 2.1. Let K and L be two convex bodies in Rn, with L � K. Then, L is of
maximal volume in K if and only if, for every z 2 L, for every w 2 Rn and every volume
preserving T, there exists y 2 Snÿ1 such that

rK
�
z; z� w� T �rL�z; y�y�

�
W 1: & �5�

We assume thatK is smooth enough: we ask that it is strictly convex and its support
function hK is twice continuously differentiable on Rn n f0g. Under this assumption,
we have that hKz is twice continuously differentiable onRn n f0g for every z 2 int�K�.

LEMMA 2.2. Let L be of maximal volume in K, and z 2 L \ int�K�. Then, for every
w 2 Rn and every S 2 L�Rn;Rn�we can ¢nd y 2 Snÿ1 such that rL�z; y� � rK �z; y� and

hKz

�
w� rK �z; y�S�y�

�
X

trS
n
: �6�

Proof.We follow the argument of [GM]. Let w 2 Rn and S 2 L�Rn;Rn�. If e > 0 is
small enough, then Te � �I � eS�=�det�I � eS��1=n is volume preserving, hence, using
(4) and Lemma 2.1 for Te and ew, we ¢nd ye 2 Snÿ1 such that

hKz

�
ew� Te�rL�z; ye�ye�

�
X 1: �7�

Since

�det�I � eS��1=n � 1� e
trS
n
�O�e2�;

we get

hKz

�
rL�z; ye�ye � ew� erL�z; ye�S�ye�

�
X 1� e

trS
n
�O�e2�: �8�

Since L � K , we have hKz �rL�z; ye�ye� � rL�z; ye�=rK �z; ye�W 1, and the subadditivity
of hKz gives

hKz

�
w� rL�z; ye�S�ye�

�
X

trS
n
�O�e�: �9�

By compactness, we can ¢nd em! 0 and y 2 Snÿ1 such that yem ! y. Then, taking
limits in (9), we get

hKz

�
w� rL�z; y�S�y�

�
X

trS
n
; �10�

and taking limits in (7) we see that hKz �rL�z; y�y�X 1, which forces rL�z; y� �
rK �z; y�. &

Making one more step, we obtain the following condition:
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LEMMA 2.3. Let L be of maximal volume in K, and z 2 L \ int�K�. Then, for every
w 2 Rn and every T 2 L�Rn;Rn�we can ¢nd y 2 Snÿ1 such that rL�z; y� � rK �z; y� and

hrhKz �y�;w� rK �z; y�T �y�iX
trT
n
: �11�

Proof. Let T 2 L�Rn;Rn�, and de¢ne Se � I � eT , e > 0. By Lemma 2.2, we can
¢nd ye 2 Snÿ1 such that rK �z; ye� � rL�z; ye� and

hKz �ew� rK �z; ye�ye � erK �z; ye�T �ye��
X

tr�I � eT �
n

� 1� e
trT
n
:

�12�

The left-hand side is equal to

hKz �rK �z; ye�ye� � ehrhKz �ye�;w� rK �z; ye�T �ye�i �O�e2�
� 1� ehrhKz �ye�;w� rK �z; ye�T �ye�i �O�e2�: �13�

Therefore,

hrhKz �ye�;w� rK �z; ye�T �ye�iX
trT
n
�O�e�: �14�

Choosing again em! 0 such that yem ! y 2 Snÿ1, we see that rK �z; y� � rL�z; y� and
y satis¢es (11). &

Lemma 2.3 and a separation argument give us a generalization of John's represen-
tation of the identity:

THEOREM 2.4. Let K be smooth enough, L be of maximal volume in K, and
z 2 L \ int�K�. There exist mW n2 � n� 1 vectors y1; . . . ; ym 2 Snÿ1 such that
rK �z; yj� � rL�z; yj� and l1; . . . ; lm > 0, such that:

(i)
P

ljrhKz �yj� � o,
(ii) Id �P lj��rhKz �yj�� 
 �rK �z; yj�yj��.

Proof. We identify the af¢ne transformations of Rn with points in Rn2�n, and
consider the set

C � co
n
�rhKz �y� 
 rK �z; y�y� � rhKz �y�: y 2 Snÿ1; rK �z; y� � rL�z; y�

o
: �15�

Then, C is a compact convex set with the Euclidean metric, and we claim that
Id=n 2 C. If not, there exist w 2 Rn and T 2 L�Rn;Rn� such that

hId=n;T � wi >
D
�rhKz �y� 
 rK �z; y�y� � rhKz �y�;T � w

E
; �16�
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whenever rK �z; y� � rL�z; y�. But, (16) is equivalent to

trT
n
> hrhKz �y�;w� rK �z; y�T �y�i; �17�

and this contradicts Lemma 2.3.
Carathëodory's theorem shows that we can ¢nd mW n2 � n� 1 and positive reals

l1; . . . ; lm such that

Id �
Xm
j�1

lj
�
�rhKz �yj� 
 rK �z; yj�yj� � rhKz �yj�

�
; �18�

for y1; . . . ; ym 2 Snÿ1 with rK �z; yj� � rL�z; yj�. This completes the proof. &

Remark. Assume that L is also smooth enough. Let y 2 Snÿ1 be such that
rK �z; y� � rL�z; y�. Observe that

hrhKz �y�; rK �z; y�yi � rK �z; y�hKz �y� � 1: �19�
Also, x � rhLz �y� is the unique point of Lz for which hx; yi � hLz �y� � hKz �y�. Since
hrhKz �y�; yi � hKz �y� and rhKz �y� 2 Kz � Lz, we must have

rhKz �y� � rhLz �y�: �20�
Hence, the theorem can be stated in the following form:

THEOREM 2.5. Let K and L be smooth enough, and L be of maximal volume in K.
For every z 2 int�L�, we can ¢nd contact points v1; . . . ; vm of K ÿ z and Lÿ z, contact
points u1; . . . ; um of Kz and Lz, and positive reals l1; . . . ; lm, such that:P

ljuj � o, huj; vji � 1, and

Id �
Xm
j�1

ljuj 
 vj : �21�

&

Remark. The analogue of the Dvoretzky^Rogers lemma [DR] in the context of
Theorem 2.5 is the following: If F is a k-dimensional subspace ofRn and PF denotes
the orthogonal projection onto F , then there exists j 2 f1; . . . ;mg such that

hPF �uj�;PF �vj�iX k
n
:

This can be easily checked, since

k � trPF �
Xm
j�1

ljhPF �uj�;PF �vj�i;

and
P

lj � n.
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As an application of Theorem 2.4, we give a direct proof of the fact that the dia-
meter of the Banach^Mazur compactum is bounded by n:

PROPOSITION 2.6. Let K and L be symmetric convex bodies in Rn. Then,
d�K;L�W n.

Proof. We may assume that K and L satisfy our smoothness hypotheses, and that
K is symmetric about o. Let L1 be an af¢ne image of L which is of maximal volume
in K .

Claim. L1 is also symmetric about o.
Let z be the center of L1. Then L1 � 2zÿ L1 � K and the symmetry of K shows

that L1 ÿ 2z � K . It follows that

~L � L1 ÿ z � L1 � �L1 ÿ 2z�
2

� K; �22�

and L1 ÿ z is o-symmetric. If z 6� o, we obtain a contradiction as follows: we de¢ne a
linear map T which leaves z? unchanged and sends z to �1� a�z, where
0 < a < jzj2=hL1ÿz�z�. One can easily check that

T �L1 ÿ z� � co�L1;L1 ÿ 2z� � K and jT �L1 ÿ z�j � �1� a�jL1j > jL1j:

We write L for L1. Let x 2 Rn and choose z � w � o and T �y� � hrhL� �x�; yix in
Lemma 2.3. Then there exists y 2 Snÿ1 such that rK �o; y� � rL�o; y� andD

rhK� �y�; hrhL� �x�; rL�o; y�yix
E
X

hL� �x�
n

: �23�

But, rhL� �x� 2 L� and rL�o; y�y 2 L. Since L is o-symmetric, we have

jhrhL� �x�; rL�o; y�yijW 1: �24�

Using now the o-symmetry of K and the fact that rhK� �y� 2 K�, from (23) and (24)
we get

hK� �x�X hL� �x�
n

: �25�

Therefore, L� � nK�, and this shows that K � nL. &

We now assume that L is symmetric and K is any convex body:

PROPOSITION 2.7. Let L be a symmetric convex body and K be any convex body in
Rn. Then, d�K;L�W 2nÿ 1.

Proof. We may assume that L is of maximal volume in K and L is symmetric
about o.
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Let d > 0 be the smallest positive real for which hL� �y�W dhK� �y� for all y 2 Rn.
Then, duality, the symmetry of L and the fact that L � K show that
hK �ÿx�W dhL�ÿx� � dhL�x�W dhK �x� for every x 2 Rn.

We de¢ne T �y� � hnrhL� �x�; yix and w � gx, where g 2 �0; n� is to be determined.
From Lemma 2.3, there exists y 2 Snÿ1 such that rK �o; y� � rL�o; y� andD

rhK� �y�; gx� nhrhL� �x�; rL�o; y�yix
E
X

nhrhL� �x�; xi
n

� hL� �x�: �26�

Since rhL� �x� 2 L�, rL�o; y�y 2 L and L is o-symmetric, we have

jhrhL� �x�; rL�o; y�yijW 1;

therefore

gÿ nW g� nhrhL� �x�; rL�o; y�yiW g� n: �27�

Let s � hrhL� �x�; rL�o; y�yi. Since rhK� �x� 2 K�, from (26) and (27) we get

hL� �x�W �g� n�hK� �x�; �28�

if g� nsX 0, and

hL� �x�W �nÿ g�dhK� �x�; �29�

if g� ns < 0. It follows that

hL� �x�W maxfg� n; �nÿ g�dghK� �x�: �30�

This shows that dW maxfg� n; �nÿ g�dg, and choosing g � n�d ÿ 1�=�d � 1� we get
dW 2nÿ 1. Hence, L� � �2nÿ 1�K� and the result follows. &

3. Choice of the Center

In this section we study the case where L is a polytope with vertices v1; . . . ; vN , and K
has C2 boundary with strictly positive curvature (K 2 C2

�). Then, we can strengthen
Theorem 2.5 in the following sense:

THEOREM 3.1. Let L be of maximal volume in K. Then, there exists
z 2 Lnfv1; . . . ; vNg for which we can ¢nd l1; . . . ; lN X 0, and u1; . . . ; uN 2 bd�Kz�
so that

(1)
P

ljuj � o;
P lj

n vj � z.
(2) huj; vj ÿ zi � 1 for all j � 1; . . . ;N.
(3) Id �PN

j�1 ljuj 
 vj .
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Proof. We may assume that o 2 int�L�. By Theorem 2.4 and our hypotheses about
K , for every z 2 L0:� L n fv1; . . . ; vNg there exist representations of the form

Id �
XN
j�1

ljuj 
 vj;

where lj X 0, uj 2 bd�Kz� with huj; vj ÿ zi � 1, and
PN

j�1 ljuj � o. Note that the
representation of the identity follows from Theorem 2.4 because of the conditionPN

j�1 ljuj � o.
We de¢ne a set-function f on L0, setting f�z� to be the set of all points
�1=n�PN

j�1 ljvj 2 L which come from such representations (with respect to z).
The set f�z� is clearly nonempty, convex and closed.

Let s 2 �0; 1�. We de¢ne fs on L0 with fs�z� � sf�z�, and gs:L0 ! R� with

gs�z� � d�z;fs�z�� � inffjzÿ wj: w 2 fs�z�g: �1�

It is easily checked that fs is upper semi-continuous and gs is lower semi-continuous.

LEMMA 3.2. For every s 2 �0; 1�, there exists z 2 sL such that z 2 fs�z�.
Proof. Assume otherwise. Since fs�z� � sL for all z 2 L0, this means that gs�z� > 0

on L0. We set r � �1� s�=2, and consider the restriction of fs onto rL. Since gs is
lower-semicontinuous, there exists q � q�r; s� > 0 such that gs�z�X q for all z 2 rL.

On the other hand, fs is upper-semicontinuous, convex-valued with bounded
range. Therefore, fs admits approximate continuous selections: By a result of Beer
[Be] (see also [RW], pp. 195), for every e > 0 there exists a continuous function
he: rL! Rn so that

d�he�z�; sf�z�� < e: �2�

Let c � c�r; s� > 0 be such that sL� cDn � rL. Letting e � �1=2�minfq; cg we ¢nd
continuous h: rL! rL satisfying (2). Brouwer's theorem shows that h has a ¢xed
point z 2 rL. But then,

qW d�z; sf�z�� � d�h�z�; sf�z�� < e;

which is a contradiction. This completes the proof. &

We apply Lemma 3.2 for a sequence sk 2 �0; 1� with sk ! 1. For each k we ¢nd
zk 2 skL and l�k�j X 0 such that

Id �
XN
j�1

l�k�j u�k�j 
 vj; �3�
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where u�k�j 2 bd�Kzk� is uniquely determined by hu�k�j ; vj ÿ zki � 1, and

zk � sk
XN
j�1

l�k�j
n

vj;
XN
j�1

l�k�j u�k�j � o: �4�

Passing to a subsequence, we may assume that zk ! z 2 L. If z is not one of the
vertices of L, then u�k�j ! uj, where uj 2 bd�Kz� and huj; vj ÿ zi � 1. Passing to further
subsequences we may assume that l�k�j ! lj X 0. Since sk ! 1, �3� and �4� imply

Id �
XN
j�1

ljuj 
 vj; �5�

and

z �
XN
j�1

lj
n
vj;

XN
j�1

ljuj � o: �6�

This is exactly the assertion of the Theorem, provided that we have proved the
following:

CLAIM 3.3. Let sk 2 �0; 1� with sk ! 1, and zk 2 skf�zk�. If zk ! z, then
z =2 fv1; . . . ; vNg.

Proof. We assume that zk satisfy �3� and �4� and zk ! v1. Our assumptions about
K imply that Kv1 is unbounded only in the direction of N�v1�, where N�v1� is the
unit normal vector to K at v1. For large k, zk is away from v2; . . . ; vN , therefore
u�k�j ! uj, j � 2; . . . ;N, where uj is the unique point in bd�Kv1 � for which
huj; vj ÿ zi � 1.

Since �u�k�j �; jX 2 is bounded and
PN

j�1 lj � n, �4� shows that

jl�k�1 u�k�1 j � j
XN
j�2

l�k�j u�k�j j

remains bounded. Hence, passing to a subsequence we may assume that
l�k�1 u�k�1 ! w1, and l�k�j ! lj for all j � 1; . . . ;N. This means that

Id � w1 
 v1 �
XN
j�2

ljuj 
 vj; �7�

and

v1 �
XN
j�1

lj
n
vj; w1 �

XN
j�2

ljuj � o: �8�

Since v1 is a vertex of L, we must have l2 � . . . � lN � 0. Then, w1 � o, and �7� takes
the form Id � 0, which is a contradiction. &
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Actually, the argument we used for the proof of Claim 3.3 shows the following
extension of Theorem 2.4:

PROPOSITION 3.4. Let K;L be smooth enough and assume that L is of maximal
volume inside K. For every z 2 bd�K� \ bd�L�, there exist m0 WmW n2 � n� 1,
contact points v1; . . . ; vm of K and L, contact points u1; . . . ; um0 of Kz and Lz, and
nonnegative numbers l1; . . . ; lm0 , am0�1; . . . ; am so that:

(1) huj; vj ÿ zi � 1 for all j � 1; 2; . . . ;m0,
(2) hajN�z�; vj ÿ zi � 0 for all j � m0 � 1; . . . ;m,
(3) Id �Pm0

j�1 ljuj 
 vj �N�z� 
 �Pm
j�m0�1 ajvj�,

where N�z� is the unit normal vector of K at z.
Sketch of the proof. Let z 2 bd�K� \ bd�L�, and consider a sequence zk 2 int�L�

with zk ! z. Applying Theorem 2.4, for each k we ¢nd l�k�j X 0, contact points
v�k�j of K and L, and contact points u�k�j of Kzk and Lzk so that

XN
j�1

l�k�j u�k�j � o; u�k�j ; v
�k�
j ÿ zk

D E
� 1 and Id �

XN
j�1

l�k�j u�k�j 
 v�k�j :

We may assume that N � n2 � n� 1 for all k.
Passing to subsequences we may assume that l�k�j ! lj and v�k�j ! vj as k!1,

where lj X 0 and vj are contact points of K and L. We may also assume that there
exists m0 WN such that u�k�j ! uj if jWm0, and ju�k�j j ! 1 if j > m0.

LetN�z� be the unit normal vector to K at z. It is not hard to see that for all j > m0,
the angle between u�k�j and N�z� tends to zero as k!1. Using the fact thatPN

j�1 l
�k�
j u�k�j � o, we then see that for large k

max
j>m0
jl�k�j u�k�j jW j

X
j>m0

l�k�j u�k�j j � j
X
jWm0

l�k�j u�k�j j; �9�

and this quantity remains bounded, since all l�k�j and u�k�j (jWm0) converge.
Therefore, we may also assume that l�k�j u�k�j ! ajN�z�, j > m0.

Passing to the limit we check that huj; vj ÿ zi � 1, jWm0, and

Id �
Xm0

j�1
ljuj 
 vj �N�z� 


XN
j�m0�1

ajvj

 !
: �10�

Finally,

hajN�z�; vj ÿ zi � lim
k

l�k�j u�k�j ; v
�k�
j ÿ zk

D E
� lim

k
l�k�j � 0
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for all j > m0, and

Xm0

j�1
ljuj �

XN
j�m0�1

aj

 !
N�z� � o:

Ignoring all j's for which aj � 0, we conclude the proof. &

4. Volume Ratio

In this Section we give an estimate for the volume ratio of two convex bodies:

THEOREM 4.1. Let L be of maximal volume in K. Then, �jK j=jLj�1=n W n.
Proof.Without loss of generality we may assume L is a polytope and K 2 C2

�, and
using Theorem 3.1 we may assume that o 2 L \ int�K�, and

Id �
Xm
j�1

ljuj 
 vj; �1�

where lj > 0, u1; . . . ; um 2 bd�K��, v1; . . . ; vm are contact points of K and L,
huj; vji � 1, and

Pm
j�1 ljuj � o �Pm

j�1 ljvj. This last condition shows that mX n� 1.
Since uj 2 K�, j � 1; . . . ;m, we have the inclusion

K � U :� fx: hx; ujiW 1; j � 1; . . . ;mg: �2�

Observe that U is a convex body, because
P

ljuj � o. On the other hand, vj 2 L,
j � 1; . . . ;m. Therefore,

L � V :� cofv1; . . . ; vmg: �3�
It follows that

jK j
jLj W

jU j
jV j : �4�

We de¢ne ~vj 2 Rn�1 by

~vj � n
n� 1

�ÿvj; 1�; j � 1; . . . ;m: �5�

Then, we can estimate jV j using the reverse form of the Brascamp^Lieb inequality
(see [Bar]):

LEMMA 4.2. Let

D~v � inf

(
det

Pm
j�1 ljajvj 
 vj

� �
Qm

j�1 a
lj
j

: aj > 0; j � 1; 2; . . . ;m

)
:
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Then, the volume of V satis¢es the inequality

jV jX n� 1
n

� �n�1 ������
D~v
p
n!

: �6�

Proof. Let

NV �x� �
inf

Pm
i�1 ai : ai X 0 and x �Pm

i�1 ai ~vi
n o

; if such ai exist;

�1; otherwise:

8<:
Let also C � cofÿv1;ÿv2; . . . ;ÿvmg.

Claim. If x � �y; r� for some y 2 Rn and r 2 R, then

eÿNV �x�W wfy2rCgwfrX 0ge
ÿn�1

n r: �7�

[If r < 0 then NV �x� � �1 and the inequality is true. Otherwise, let ai X 0 be such
that x �Pm

i�1 ai ~vi and
Pm

i�1 ai � NV �x�. Then, it is immediate that NV �x� �ÿ�n� 1�=n�rX 0 and y � ÿn=�n� 1��Pm
i�1 ai�ÿvi� 2 rC. From this (7) follows.]

Integrating the inequality (7) we get

Z
Rn�1

eÿNV �x� dxW n!
n

n� 1

� �n�1
jV j:

We now set dj �
ÿ�n� 1�=n�lj and apply the reverse form of the Brascamp^Lieb

inequality to the left hand side integral:Z
Rn�1

eÿNV �x� dx �
Z
Rn�1

sup
aj X 0

x�
Pm

j�1 aj ~vj

Ym
j�1

eÿaj dx

�
Z
Rn�1

sup
x�
Pm

j�1 aj ~vj

Ym
j�1

eÿaj=djwfaj X 0g
� �dj

X
������
D~v

p Ym
j�1

Z 1
0

eÿt dt
� �dj

�
������
D~v

p
:

From this (6) follows. &

We now turn to ¢nd an upper bound for jU j: as above, let dj � �n� 1�=n�ljÿ
and set

~uj � ÿuj; �1=n�
ÿ �

for j � 1; . . . ;m.
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LEMMA 4.3. The volume of U satis¢es the inequality

jU jW 1������
D~u
p �n� 1�n�1

n!n
; �8�

where

D~u � inf

�
det�P djaj ~uj 
 ~uj�Q

adjj
; aj > 0

�
: �9�

Proof.We apply the Brascamp^Lieb inequality [BL] (see also [Bar]) in the spirit of
K. Ball's proof of the fact that among all convex bodies having the Euclidean unit
ball as their ellipsoid of maximal volume, the regular simplex has maximal volume
[Ba].

For each j � 1; . . . ;m, de¢ne fj :R! �0;1� by fj�t� � eÿtw�0;1��t�, and set

F �x� �
Ym
j�1

fj�h~uj; xi�dj ; x 2 Rn�1: �10�

The Brascamp^Lieb inequality givesZ
Rn�1

F �x�dxW 1������
D~u
p

Ym
j�1

Z
R
fj

� �dj

� 1������
D~u
p : �11�

As in [Ba], writing x � �y; r� 2 Rn �R, we see that F �x� � 0 if r < 0. When rX 0, we
have F �x� 6� 0 precisely when y 2 �r=n�U , and then, taking into account the facts thatP

ljuj � o and
P

dj � n� 1, we see that F is independent of y and equal to

F �x� � exp�ÿr�n� 1�=n�: �12�
It follows from (11) that

1������
D~u
p X

Z 1
0

exp�ÿr�n� 1�=n� r
n

� �n
jU jdr � jU j n!n

�n� 1�n�1 : & �13�

Combining the two lemmata, we get

jK j
jLj W

nn������������
D~uD~v
p : �14�

Observe that ~uj, ~vj and dj satisfy h~uj; ~vji � 1, j � 1; . . . ;m. Using the fact thatPm
j�1 ljuj � o �Pm

j�1 ljvj, we check that

Id �
Xm
j�1

dj ~uj 
 ~vj :

Thus, in order to ¢nish the proof of Theorem 4.1 it suf¢ces to prove the following
proposition.
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PROPOSITION 4.4. Let l1; . . . ; lm > 0, u1; . . . um and v1; . . . ; vm be vectors
satisfying huj; vji � 1 for all j � 1; . . .m and

Id �
Xm
j�1

ljuj 
 vj: �15�

Then DuDv X 1.
Proof. For I � f1; 2; . . . ;mg we use the notation lI �

Q
i2I li, aI �

Q
i2I ai, and for

I 's with cardinality n, we write UI � det ui: i 2 I� � and VI � det vi: i 2 I� �. Moreover,
we write �lU�I for det liui: i 2 I� �.

Applying the Cauchy^Binet formula we have

det
Xm
j�1

ljajuj 
 vj

 !
�

X
jI j�n

I�f1;2;...;mg

aI �
���
l
p

U�I �
���
l
p

V �I : �16�

But

X
�
���
l
p

U�I �
���
l
p

V �I � det
Xm
j�1

ljuj 
 vj

 !
� det�Id� � 1:

Hence, applying the arithmetic-geometric means inequality to the right side of (16)
we deduce that

X
jI j�n

I�f1;2;...;mg

aI �
���
l
p

U�I �
���
l
p

V �I X
Y
jI j�n

I�f1;2;...;mg

a�
��
l
p

U�I �
��
l
p

V �I
I

�
Ym
j�1

a

P
j2I;jI j�n�

��
l
p

U�I �
��
l
p

V �I
j :

Observe now that the exponent of aj in the above product equals lj :X
j2I; jI j�n

�
���
l
p

U�I �
���
l
p

V �I �
X
jI j�n
�
���
l
p

U�I �
���
l
p

V �I ÿ
X

j 62I; jI j�n
�
���
l
p

U�I �
���
l
p

V �I

� det
Xm
j�1

ljuj 
 vj

 !
ÿ det�I ÿ ljuj 
 vj�

� lj;

since huj; vji � 1. Thus, we have shown that

det
Xm
j�1

ljajuj 
 vj

 !
X
Ym
j�1

aljj : �17�
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Now, for any gj; dj > 0 we have

det
Xm
j�1

ljgjuj 
 uj

 !
det

Xm
j�1

ljdjvj 
 vj

 !
�
X
jI j�n

gI �
���
l
p

U�2I
X
jI j�n

dI �
���
l
p

V �2I :

By the Cauchy^Schwarz inequality this is greater than

X
jI j�n

lI
���������
gIdI

p
UIVI

 !2

:

Apply now (17) to get

det
Pm

j�1 ljgjuj 
 uj
� �

Qm
j�1 g

lj
j

det
Pm

j�1 ljdjvj 
 vj
� �

Qm
j�1 d

lj
j

X 1;

completing the proof. &

Remark. A different argument shows that vr�K;Sn�W c
���
n
p

for every convex body
K in Rn, where c > 0 is an absolute constant.

Without loss of generality, we may assume that K is of maximal volume in Dn.
Then, John's theorem gives us l1; . . . ; lm > 0 and contact points u1; . . . ; um of K
and Dn such that

Id �
Xm
j�1

ljuj 
 uj :

The Dvoretzky^Rogers lemma [DR] shows that we can choose u1; . . . ; un among the
uj's so that

jPspanfus:s<ig?uijX
nÿ i � 1

n

� �1=2

; i � 2; . . . ; n:

Therefore, the simplex S � cofo; u1; . . . ; ung has volume

jSjX 1
n!

Yn
i�2

nÿ i � 1
n

� �1=2

� 1
�n!nn�1=2 ;

and S � K � Dn. It follows that

vr�K;Sn�W jDnj
jSj

� �1=n

W
�n!�1=2n ���

n
p ���

p
p

�G�n2� 1��1=n
W c

���
n
p
:

This supports the question if vr�K;L� is always bounded by c
���
n
p

.
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