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Abstract

It is proved that if the probability P is normalised Lebesgue measure on one

of the lnp balls in Rn, then for any sequence t1, t2, . . . , tn of positive numbers, the

coordinate slabs {|xi| ≤ ti} are subindependent, namely,

P (∩n
1{|xi| ≤ ti}) ≤

n∏
1

P ({|xi| ≤ ti})

A consequence of this result is that the proportion of the volume of the ln1 ball

which is inside the cube [−t, t]n is less than or equal to fn(t) = (1− (1− t)n)n

It turns out that this estimate is remarkably accurate over most of the range

of values of t. A reverse inequality, demonstrating this, is the second major result

of the article.
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1 Introduction

Schechtman and Zinn, in [1], proved that the proportion of the volume left in the lnp ball

after removing a t-multiple of the lnq ball is of order exp(−cntp) when p < q. Recall that

the unit lnp ball which is denoted Bn
p is the set {x = (x1, . . . , xn) ∈ Rn :

∑n
i=1 |xi|p ≤ 1}.

Taking limits as q −→ ∞, they also mention some results about the proportion of the

volume of the lnp ball which is outside the cube [−t, t]n. If P is as in the abstract, their

results in this particular case are;

If t ≥ τ
(

log n
n

)1/p
, then P ({||x||∞ ≥ t}) ≤ exp (−γntp/p)

and if 2
n1/p ≤ t ≤ 1

2
, then P ({||x||∞ ≥ t}) ≥ exp (−Γntp/p)

where γ, Γ and τ are universal constants.

We consider only the case q = ∞ here, but our results are much stronger. For

simplicity we shall illustrate this only in the case p = 1 although the most important

result will be described for all p. This result is the subindependence of coordinate slabs,

stated below as Theorem 1.

Theorem 1 (Subindependence of coordinate slabs) If the probability P is nor-

malised Lebesgue measure on one of the lnp balls in Rn, then for any sequence t1, . . . , tn

of positive numbers,

P (∩n
1{|xi| ≤ ti}) ≤

n∏
1

P ({|xi| ≤ ti}).

The particular case p = 1, t1 = . . . = tn of Theorem 1 gives an upper bound for

the proportion of the volume of the ln1 ball which is inside the cube [−t, t]n . Since the

proportion of the volume of the ln1 ball which is inside a coordinate slab of width 2t is

1− (1− t)n when t ≤ 1, the result in this case is given by the following Corollary.

2



Corollary 1 If Fn(t) is the proportion of the volume of the ln1 ball inside the cube [−t, t]n

then

Fn(t) ≤ fn(t) = (1− (1− t)n)n

Although Fn(t) is the function
∑[1/t]

0 (−1)j(n
j )(1− jt)n, which is a spline with many

knots, we prove in Theorem 2 that the polynomial fn(t) = (1 − (1− t)n)n is an aston-

ishingly good approximation to Fn(t), at least when Fn(t) is not too small.

Theorem 2 (An estimate in the reverse direction) With Fn(t) as above,

1− Fn(t)

1− fn(t)
= 1 + O

(
(log n)3

n

)

as n →∞ uniformly in t.

Theorem 2 enables us to describe the threshold behaviour of Fn(t) much more pre-

cisely than Schechtman and Zinn. For example, if t = log n−log c
n

then the information

we get from Theorem 2 is that Fn(t) should be something like fn(t), which in turn is

something like (1− exp(− log n + log c))n =
(
1− c

n

)n
' exp(−c).

2 Method

In this section we will briefly explain the crucial points of the proofs of these two

Theorems for the simplest case when p = 1 and t1 = . . . = tn = t.

The proof of Theorem 1, (the upper bound for Fn) depends on a very convenient

interaction between two different equations expressing Fn and its derivative in terms of

Fn−1. Each of these equations is proved using a simple geometric argument: they can
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readily be combined to give a differential inequality for Fn which integrates up to the

stated result.

These equations are;

Fn(t) = n
∫ t

0
(1− u)n−1Fn−1

(
t

1− u

)
du

d

dt
Fn(t) = n2(1− t)n−1Fn−1(

t

1− t
)

The upper bound is extremely precise as long as Fn(t) is not too small. The easiest

way to state this is to write it as an estimate for the volume outside the cube, namely

for 1− Fn(t). This is what we do in Theorem 2.

The proof of Theorem 2, (a lower bound for Fn) is technically more complicated

although it is much less delicate. The crucial point is to show that at its maximum,

the function 1−Fn

1−fn
is dominated by the value of a related function, which in turn can be

shown to be small by means of the (rather precise) upper bound already proved.

In fact, this related function, say Gn(t), is not as small as we would like it to be in

the whole interval (0,1), but it behaves nicely in a smaller interval [tn, 1/2], for some

value of tn which is roughly like log n−log log n
n

. It is in this range that 1−Fn

1−fn
actually attains

its maximum. However, for technical reasons, it is simpler to show directly that 1−Fn

1−fn
is

small outside this interval.

3 The upper bound.

In this section we shall give a detailed proof for the simplest case of Theorem 1, p = 1.

The other cases are simple generalizations of this one, so only a brief sketch of the proof

will be given then.
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Theorem 1 (Subindependence of coordinate slabs) If the probability P is nor-

malised Lebesgue measure on one of the lnp balls in Rn, then for any sequence t1, . . . , tn

of positive numbers,

P (∩n
1{|xi| ≤ ti}) ≤

n∏
1

P ({|xi| ≤ ti}).

• Proof of Theorem 1 for the case p = 1, t1 = . . . = tn = t ;

Except in the trivial case t ≥ 1 the problem is to show that the proportion of the

volume of the unit ln1 ball which is inside the cube Qn(t) = [−t, t]n is bounded from

above by the function fn(t) = (1− (1− t)n)n. This proportion will be denoted by

Fn(t).

The proof uses the following two equations;

Fn(t) = n
∫ t

0
(1− u)n−1Fn−1

(
t

1− u

)
du (3.1)

d

dt
Fn(t) = n2(1− t)n−1Fn−1

(
t

1− t

)
(3.2)

Since Fn−1 is an increasing function, Fn−1

(
t

1−u

)
is increasing in u. So from (3.1)

we get:

Fn(t) ≤ nFn−1

(
t

1− t

) ∫ t

0
(1− u)n−1du

For convenience, we shall abbreviate the integral
∫ t
0(1 − u)n−1du = 1−(1−t)n

n
by

Yn(t). Then (3.2) and the inequality can be written,

Fn(t) ≤ nFn−1

(
t

1− t

)
Yn(t) (3.3)

d

dt
Fn(t) = n2Fn−1

(
t

1− t

)
d

dt
Yn(t) (3.4)
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If we eliminate the factor nFn−1

(
t

1−t

)
we get;

d
dt

Fn(t)

Fn(t)
≥ n

d
dt

Yn(t)

Yn(t)
(3.5)

and, by integrating from t to 1 we get the desired result;

Fn(t) ≤
(

Yn(t)

Yn(1)

)n

= (1− (1− t)n)n

It remains to prove the relations (3.1) and (3.2).

For the first one, let Hu = {x ∈ Rn : x1 = u}.Then,

Fn(t) =
V oln(Qn(t) ∩Bn

1 )

V oln(Bn
1 )

=
n!

2n
2
∫ t

0
V oln−1(Qn(t) ∩Bn

1 ∩Hu)du

=
n!

2n−1

∫ t

0
V oln−1(Qn−1(t) ∩Bn−1

1 (1− u))du

= n
∫ t

0
(1− u)n−1V oln−1(Qn−1(t) ∩Bn−1

1 (1− u))

V oln−1(B
n−1
1 (1− u))

du

= n
∫ t

0
(1− u)n−1Fn−1

(
t

1− u

)
du

For the second one, put Hn(t) = V oln(Qn(t) ∩ Bn
1 ). Since Fn(t) = Hn(t)

V oln(B1
n)

=

n!
2n Hn(t), to find d

dt
Fn(t) it suffices to find d

dt
Hn(t), which is;

d

dt
Hn(t) = lim

h→0

Hn(t + h)−Hn(t)

h

= 2nV oln−1(Qn−1(t) ∩Bn−1
1 (1− t))

and thus,

d

dt
Fn(t) = n2V oln−1(Qn−1(t) ∩Bn−1

1 (1− t))

V oln−1(B
n−1
1 )
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= n2(1− t)n−1V oln−1(Qn−1(t) ∩Bn−1
1 (1− t))

V oln−1(B
n−1
1 (1− t))

= n2(1− t)n−1Fn−1

(
t

1− t

)

• Proof of Theorem 1 for the case p = 1 ;

For convenience, let Fn(t1, . . . , tn) denote the proportion of the volume of the unit

ln1 ball which is inside the cuboid Qn(t1, . . . , tn) = [−t1, t1] × . . . × [−tn, tn]. The

Theorem states that

Fn(t1, . . . , tn) ≤ Yn(t1)

Yn(1)
. . .

Yn(tn)

Yn(1)

where Yn(t) is the integral
∫min{1,t}
0 (1− u)n−1du

Of course, if one of the ti’s is zero, then Fk(t1, . . . , tk) = 0 and the inequality is

trivial. It is also trivial when all the ti’s are greater than 1.

If neither of these trivial cases applies, we prove that as long as for some i the ti

is less than 1, the value of the function Fn at point (t1, . . . , tn) is dominated by

an appropriate multiple of the value of Fn, at the point with the ith coordinate

replaced by 1 and the rest remaining the same, i.e.

Fn(t1, . . . , tn) ≤ Yn(ti)

Yn(1)
Fn(t1 . . . , ti−1, 1, ti+1 . . . , tn) (3.6)

So, if we suppose, without loss of generality, that 0 < ti < 1 for i = 1 . . . k,

(1 < k ≤ n) and ti ≥ 1 for i = k +1, . . . , n, then we will have in turn the following

inequalities;
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Fn(t1, . . . , tn) ≤ Yn(t1)

Yn(1)
Fn(1, t2 . . . , tn)

≤ Yn(t1)

Yn(1)

Yn(t2)

Yn(1)
Fn(1, 1, t3 . . . , tn)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ Yn(t1)

Yn(1)
. . .

Yn(tk)

Yn(1)
Fn(1, . . . , 1, tk+1, . . . , tn)

Since Fn(1, . . . , 1, tk+1 . . . , tn) = 1 the proof is complete.

Thus, the crucial point is to prove (3.6).Without loss of generality, we will prove

this for i = 1, namely the relation;

Fn(t1, . . . , tn) ≤ Yn(t1)

Yn(1)
Fn(1, t2 . . . , tn) (3.7)

when 0 < t1 < 1.

To do this, we again combine two equations. The first one relates Fn and Fn−1,

and the second one relates Fn−1 and the partial derivative of Fn with respect to

the first coordinate, at point t1. These are;

Fn(t1, . . . , tn) = n
∫ t

0
(1− u)n−1Fn−1

(
t2

1− u
, . . . ,

tn
1− u

)
du (3.8)

≤ nFn−1

(
t2

1− t1
, . . . ,

tn
1− t1

) ∫ t

0
(1− u)n−1du

= nFn−1

(
t2

1− t1
, . . . ,

tn
1− t1

)
Yn(t1)
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and

∂

∂t1
Fn(t1, . . . , tn) = n(1− t1)

n−1Fn−1

(
t2

1− t1
, . . . ,

tn
1− t1

)
(3.9)

= Fn−1

(
t2

1− t1
, . . . ,

tn
1− t1

)
d

dt1
Yn(t1)

Eliminating Fn−1

(
t2

1−t1
, . . . , tn

1−t1

)
, we get

∂
∂t1

Fn(t1, . . . , tn)

Fn(t1, . . . , tn)
≥

d
dt1

Yn(t1)

Yn(t1)
(3.10)

which integrates to (3.7).

The proofs of (3.8) and (3.9) are very similar to the proofs of (3.1) and (3.2).

• Sketch of the proof of Theorem 1 for the case p > 1, t1 = . . . = tn = t

Since the proof of this case does not differ too much from the one given for the first

case, we shall only write the two basic equations that are used in place of (3.1)

and (3.2). A slightly different notation is used here. Y p
n (t) stands for

∫min{1,t}
0 (1−

up)
n−1

p du, vp
n for the volume of the Bn

p ball, and F p
n(t) for the proportion of the

Bn
p ball , which is inside the cube Qn(t).

The relations are as follows;

F p
n(t) =

2vp
n−1

vp
n

∫ t

0
(1− up)

n−1
p F p

n−1

( tp

1− up

) 1
p

 du (3.11)

≤ 2vp
n−1

vp
n

F p
n−1

( tp

1− tp

) 1
p

Y p
n (t)
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d

dt
F p

n(t) =
2nvp

n−1

vp
n

(1− tp)
n−1

p F p
n−1

( tp

1− tp

) 1
p

 (3.12)

=
2nvp

n−1

vp
n

F p
n−1

( tp

1− tp

) 1
p

 d

dt
Y p

n (t)

Remarks

1. (3.5) and (3.10) actually state that the functions Fn(t)
(Yn(t))n and Fn(t,t2,...,tn)

Yn(t)
, are in-

creasing in t.

A consequence of this, is that the function Fn(t1,...,tn)
Yn(t1)...Yn(tn)

is increasing in each coor-

dinate.

2. If 0 < ti < 1 for i = 1 . . . k, (1 < k ≤ n) and ti ≥ 1 for i = k + 1, . . . , n, then

Theorem 1 states that Fn(t1, . . . , tn) ≤ (1− (1− t1)
n) . . . (1− (1− tk)

n)

4 The lower bound

Using the notation introduced in the previous section, we shall prove that the function

fn(t) is not only an upper bound (see Theorem 1), but it is also a very good approx-

imation to Fn(t), within the interesting range of t. More precisely, we prove that the

function 1−Fn(t)
1−fn(t)

converges to 1 uniformly in t, as stated in the next Theorem;

Theorem 2 (An estimate in the reverse direction)

1− Fn(t)

1− fn(t)
= 1 + O

(
(log n)3

n

)

uniformly in t.
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We focus our attention on the point tmax, where 1−Fn(t)
1−fn(t)

attains its maximum value.

In the first Lemma below, we find a function Gn(t) which dominates 1−Fn(t)
1−fn(t)

at tmax.

This related function, is proved to be small in a particular range, where tmax actually

occurs. Outside this range 1−Fn(t)
1−fn(t)

is small for very simple reasons. To avoid technical

difficulties, we don’t actually prove that tmax is in this particular range.

Lemma 1 At its maximum point, the function 1−Fn(t)
1−fn(t)

is dominated by the value of the

function Gn(t) =



[
1−(1− t

1−t)
n−1

1−(1−t)n

]n−1

, 0 < t ≤ 1/2

[1− (1− t)n]−(n−1) , 1/2 < t < 1

Proof of Lemma 1: Before embarking upon the proof it is perhaps worth mentioning

that it depends critically upon Theorem 1 (the upper bound for Fn) already proved.

It is easy to check that 1−Fn(t)
1−fn(t)

→ 1 as t → 0 or t → 1. So 1−Fn

1−fn
attains its maximum

in (0,1).

So [
d

dt
log

(
1− Fn(t)

1− fn(t)

)]
tmax

= 0

i.e.

1− Fn(tmax)

1− fn(tmax)
=

d
dt

Fn(tmax)
d
dt

fn(tmax)

But d
dt

Fn(t) has already been calculated in (3.2). Substituting this in the above

relation, as well as d
dt

fn(tmax) we get that

1− Fn(tmax)

1− fn(tmax)
=

Fn−1

(
tmax

1−tmax

)
(1− (1− tmax)n)n−1

Of course, Fn−1

(
tmax

1−tmax

)
= 1 if 1/2 < tmax < 1.
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To prove the required inequality for 0 < tmax ≤ 1/2, it is sufficient to apply Theorem

1 in order to dominate Fn−1

(
tmax

1−tmax

)
. Thus we get:

1− Fn(tmax)

1− fn(tmax)
≤

1−
(
1− tmax

1−tmax

)n−1

1− (1− tmax)n


n−1

= Gn(tmax)

Proof of Theorem 2: As we have already mentioned, for technical reasons, we shall

divide the interval (0,1) into three parts, and we will examine separately the possibilities

that tmax occurs in each of these parts.

More precisely, choose tn such that (1− tn)n = log n
n

and consider the intervals (0, tn),[
tn,

1
2

]
and

(
1
2
, 1
)
.

tn is something like log n−log log n
n

and is certainly less than log n
n

Numerical evidence indicates that tmax is about log n
n

but we eliminate the other

intervals directly.

• We shall prove that for t ∈ (1
2
, 1),

1− Fn(t)

1− fn(t)
≤ 1 +

1

n

It is quite easy to calculate that Fn(t) = 1−n(1−t)n when t ∈ (1
2
, 1) by integrating

(3.2) where Fn−1

(
t

1−t

)
= 1.

So, the inequality we want to prove, becomes;

n(1− t)n

1− (1− (1− t)n)n
≤ 1 +

1

n

If we put s = (1− t)n, (so that s ≤ 1/2n), the problem is to check that

ns

1− (1− s)n
≤ 1 +

1

n
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i.e. that

(1− s)n ≤ 1− n2

n + 1
s

which is certainly true if s ≤ 1/2n

• We shall prove that for all t in (0, tn) not only is the function 1−Fn(t)
1−fn(t)

close to 1,

but so is the function (1− fn(t))−1.

Since fn is increasing,

fn(t) = (1− (1− t)n)n

≤ (1− (1− tn)n)n

=

(
1− log n

n

)n

≤ exp(− log n) =
1

n

Hence,

1

1− fn

= 1 + O
(

1

n

)

• Finally we study Fn(t) for t ∈ [tn,
1
2
]

By Lemma 1,

1− Fn(tmax)

1− fn(tmax)
≤ Gn(tmax)

We shall prove that Gn(t) is as small as required in the range t ∈ [tn,
1
2
], namely

that

Gn(t) ≤ 1 + O

(
(log n)3

n

)

By the first estimate in Lemma 1, Gn in this range is:

Gn(t) =

1 +
(1− t)n −

(
1− t

1−t

)n−1

1− (1− t)n


n−1
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Thus, it is enough to prove that

(1− t)n −
(
1− t

1−t

)n−1

1− (1− t)n
≤ O

(
(log n)3

n2

)

Indeed, since the factor 1 − (1 − t)n is like a constant in this interval, it suffices

to show that (1 − t)n −
(
1− t

1−t

)n−1
is dominated by the decreasing function

n(1− t)n−2t2 (decreasing for t ≥ 2/n) which at tn is as small as required.

But

(1− t)n −
(
1− t

1− t

)n−1

≤ (1− t)n −
(
1− t

1− t

)n

=
∫ 1−t

1− t
1−t

nun−1du

≤ t2

1− t
n(1− t)n−1

= n(1− t)n−2t2

≤ n(1− tn)n−2t2n

≤ 2n(1− tn)nt2n

≤ 2n
log n

n

(log n)2

n2

= O

(
(log n)3

n2

)

Which completes the proof.

This work will form part of a Ph.D. thesis written by the second-named author.
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