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THE CENTRAL LIMIT PROBLEM FOR CONVEX BODIES

MILLA ANTTILA, KEITH BALL, AND IRINI PERISSINAKI

Abstract. It is shown that every symmetric convex body which satisfies a
kind of weak law of large numbers has the property that almost all its marginal
distributions are approximately Gaussian. Several quite broad classes of bodies
are shown to satisfy the condition.

Introduction

This paper describes a central limit theorem for symmetric, convex bodies. Let
K be a symmetric, convex body of volume 1. We regard K as a probability space
and in each direction θ, we define the random variable Xθ : x 7→ 〈x, θ〉: so the
density of Xθ is obtained by scanning across K with hyperplanes perpendicular to
θ. Now suppose that K is isotropic, i.e. that for some fixed ρ∫

K

〈x, θ〉2 dx = ρ2 for all θ.

(We remark that each K has an affine image which is isotropic.) Then each of the
random variables Xθ has variance ρ2.

Our aim is to show that most of these r.v.s are very close to a Gaussian r.v. γ
with variance ρ2. We shall prove this under the following hypothesis, which states
that the Euclidean norm concentrates near the value

√
nρ, as a function on K.

Concentration Hypothesis. For a given ε < 1
2 we say that K satisfies the ε-

concentration hypothesis if

(1) P

(∣∣∣∣ |x|√n − ρ
∣∣∣∣ ≥ ερ) ≤ ε.

Under the above hypothesis, we shall show that if δ > 0, then except for a set of
directions of spherical measure at most n e−

nδ2
50 , for every positive t, the probability

P (|Xθ| < t) differs from P (|γ| < t) by at most

δ + 4ε+
c√
n
.

At first sight, the concentration hypothesis (1) looks, at once, too strong to be
true, except in trivial cases, and too weak to be useful. On the one hand, an
estimate like (1), with a small value of ε, is considerably stronger than the estimate
which follows from Borell’s inequality or its recent generalisations and sharpenings
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[7]. On the other hand, although (1) states that most of K lies in a thin spherical
shell, K will almost always occupy only a miniscule fraction, e−n, of this shell. So
the condition cannot automatically guarantee that K “looks like” a spherical shell.

We deal with the second point by using standard concentration methods on the
sphere together with a Lipschitz estimate that depends ultimately upon a version
of the Brunn-Minkowski inequality. Concerning the first point, we believe that all
isotropic convex bodies will satisfy (1) with ε no more than about

log n√
n
.

In the last two sections we prove (1) with a small ε for two classes of bodies which
together include a significant portion of the space of convex bodies. The first is the
class of lnp balls, for which we obtain (1) with ε ≈ 1

n1/3 . To prove the concentration
property we use the subindependence of complements of coordinate slabs in the lnp
ball, which was proved in [4]. The second class is somewhat ad hoc, consisting of
uniformly convex bodies which have the additional property of being contained in
a Euclidean ball of appropriate radius, the necessary radius being dependent upon
the modulus of convexity of K. However, this class encompasses all lnp balls for
1 < p <∞; so it is fairly broad.

In the ensuing discussion we have chosen, for the sake of clarity, to separate the
abstract part, which holds for all convex, symmetric bodies under the concentration
hypothesis (1), from the proofs of the hypothesis for specific bodies.

We should remark that the above results are very much in the same spirit as some
results of Diaconis and Freedman [5], Sudakov [10] and von Weizsäcker [11]. These
show, in a general probabilistic setting, that a kind of weak law of large numbers
implies that most marginals are approximately Gaussian under certain conditions.
In the case of convex bodies we expect to obtain, and indeed do achieve, much finer
probability estimates than for the general case.

1. The abstract argument

Let us denote by gθ(s) the density of the r.v. Xθ : x 7→ 〈x, θ〉 and by g(s) that
of the Gaussian r.v. γ, with variance ρ2. The probability that Xθ is less than a
value t is the volume of K to one side of the slice K ∩ (〈θ〉⊥ + tθ). This volume
can be expressed as an integral of volumes of the (n− 1)-dimensional parallel slices
K ∩ (〈θ〉⊥ + sθ), where s runs from −∞ to t. Hence

gθ(s) = voln−1

(
K ∩

(
〈θ〉⊥ + sθ

))
.

Obviously,

g(s) =
1

ρ
√

2π
exp

(
− s2

2ρ2

)
.

So, in terms of integrals of densities, our aim is to show that for δ > 0

σ

({
θ :
∣∣∣∣∫ t

−t
gθ(s) ds−

∫ t

−t
g(s) ds

∣∣∣∣ ≤ δ + 4ε+
c√
n

for all t
})
≥ 1− n e−nδ

2
50

under the concentration hypothesis (1). (Here σ denotes the rotation-invariant
probability measure on the sphere Sn−1 = {x ∈ Rn :

∑
x2
i = 1}.)
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The proof is composed of three main steps. We begin by considering not the
individual Xθ and gθ, but an average of gθ over all θ:

A(t) =
∫
Sn−1

∫ t

−t
gθ(s) ds dσ.

This averaging enables us to ignore how the volume of K is distributed within the
relevant spherical shell. We approximate A(t) by an integral over K, of functions
that are densities of Gaussian random variables of different variances. The concen-
tration hypothesis is then used to show that most of the Gaussians have about the
same variance. This will ensure that∣∣∣∣A(t)−

∫ t

−t
g(s) ds

∣∣∣∣ ≤ 4ε+
c1√
n
.

Then, using standard concentration of measure results and the fact that
∫ t
−t gθ(s) ds

is the reciprocal of a norm, we get that for each t

σ

({
θ :
∣∣∣∣∫ t

−t
gθ(s) ds−

∫ t

−t
g(s) ds

∣∣∣∣ ≥ δ + 4ε+
c3√
n

})
≤ 2e−

nδ2
50

for each positive δ.
Finally, by dividing the real line into intervals of appropriate width and using

the Lipschitz property of the function

H(t) =
∣∣∣∣∫ t

−t
gθ(s) ds−

∫ t

−t
g(s) ds

∣∣∣∣ ,
we obtain a result for every t simultaneously.

Our first theorem estimates the spherical average A(t) of the probability
P (|Xθ| ≤ t):

Theorem 1. Under the concentration hypothesis (1), for all positive numbers t,∣∣∣∣A(t)−
∫ t

−t
g(s)ds

∣∣∣∣ ≤ 4ε+
c1√
n
.

We begin with a simple geometric lemma which approximates the average A(t)
by an integral over K.

Lemma 1. ∣∣∣∣∣A(t) − 2√
2π

∫
K

∫ t
√
n
|x|

0

e−
v2
2 dv dx

∣∣∣∣∣ ≤ c1√
n
.

Proof. If v is a unit vector in Rn, then

σ ({θ : |〈θ, v〉| < t}) =

∫ t
0

(1− u2)
n−3

2 du∫ 1

0
(1− u2)

n−3
2 du

.
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We then have∫
Sn−1

∫ t

−t
gθ(s)dsdσ =

∫
Sn−1

∫ t

−t
voln−1

(
K ∩

(
〈θ〉⊥ + sθ

))
dsdσ(θ)

=
∫
Sn−1

∫
K

1{−t≤〈x,θ〉≤t}dxdσ(θ)

=
∫
K

σ

({
− t

|x| ≤ 〈
x

|x| , θ〉 ≤
t

|x|

})
dx

=
∫
K

∫ t
|x|

0 (1− u2)
n−3

2 du∫ 1

0
(1− u2)

n−3
2 du

dx.

It is not hard to check that the integrand differs from the integral of the Gaussian
by at most a constant over

√
n. Since the volume of K is 1, the lemma follows. �

From now on, let

F (s) =
2√
2π

∫ t
s

0

e−
v2
2 dv

denote the integral of the Gaussian density with variance s2. To prove Theorem 1
we need to show that the average

∫
K
F
(
|x|√
n

)
dx is close to F (ρ). Here we invoke

the concentration hypothesis.
We divide K into two subsets: K1, where |x|√

n
is within ερ of ρ, and its comple-

ment in K, K2. Since we find F (s) to be Lipschitz with constant 2
ρ near ρ, F

(
|x|√
n

)
is within 2ε of F (ρ) in K1. The volume of K2 is sufficiently small for it not to
matter how far apart the functions are here.

Proof of Theorem 1. Let

K1 = K ∩
{∣∣∣∣ |x|√n − ρ

∣∣∣∣ ≤ ερ} ,
K2 = K ∩

{∣∣∣∣ |x|√n − ρ
∣∣∣∣ ≥ ερ} .

Then ∣∣∣∣∫
K

F

(
|x|√
n

)
dx− F (ρ)

∣∣∣∣
≤
∫
K1

∣∣∣∣F ( |x|√n
)
− F (ρ)

∣∣∣∣ dx+
∫
K2

∣∣∣∣F ( |x|√n
)
− F (ρ)

∣∣∣∣ dx.
To estimate the second integral, we need only recall that F

(
|x|√
n

)
and F (ρ) are

at most one. Therefore, by the concentration hypothesis,∫
K2

∣∣∣∣F ( |x|√n
)
− F (ρ)

∣∣∣∣ ≤ 2|K2| ≤ 2ε.

For the first integral we shall use a Lipschitz estimate for F . The derivative,
F ′(s), is bounded by 1

s , so, provided s > ρ
2 , we have a bound of order ρ−1. In K1
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we have |x|√
n
> ρ

2 since ε < 1
2 , and therefore∫

K1

∣∣∣∣F ( |x|√n
)
− F (ρ)

∣∣∣∣ dx ≤ ∫
K1

2
ρ

∣∣∣∣ |x|√n − ρ
∣∣∣∣ dx ≤ ∫

K1

2ε dx ≤ 2ε.

So we have ∣∣∣∣∫
K

F

(
|x|√
n

)
dx − F (ρ)

∣∣∣∣ ≤ 4ε.

Combining this with Lemma 1, we get∣∣∣∣A(t)−
∫ t

−t
g(s)ds

∣∣∣∣ ≤ 4ε+
c1√
n
. �

The problem is now to pass from an estimate for the average A(t) to an estimate
for specific directions.

Theorem 2. Under the concentration hypothesis (1), for each positive t and δ,

σ

({
θ :
∣∣∣∣∫ t

−t
gθ(s)ds−

∫ t

−t
g(s)ds

∣∣∣∣ ≥ δ + 4ε+
c3√
n

})
≤ 2e−

nδ2
50 .

Central to the proof of Theorem 2 is a standard concentration of measure result of
the type studied by Milman and others, based upon Levy’s isoperimetric inequality
on the sphere. For simple expositions of this kind of result, see [2] or [9].

Lemma 2. If f : Sn−1 → R is 1-Lipschitz and M is its mean, then

σ

({
θ : |f −M | ≥ δ +

c2√
n

})
≤ 2e−

nδ2
2 .

Obviously we shall take
∫ t
−t gθ(s)ds to be our Lipschitz function of θ, and so our

M will be A(t), which we already know from Theorem 1 to be close to the required∫ t
−t g(s) ds. To obtain the Lipschitz estimate we shall show that

∫ t
−t gθ(s)ds is the

reciprocal of a norm (restricted to Sn−1). To do this, we apply Busemann’s theorem
to a certain convex body in Rn+1 constructed from K.

Theorem 3 (Busemann’s theorem). Let C be a symmetric convex body in Rn,
and for each unit vector u let r(u) be the volume of the slice of C by the subspace
orthogonal to u. Then the body whose radius in each direction u is r(u) is itself
convex.

Notice that, as a consequence of Busemann’s theorem, 1
r(u) is a restriction to the

sphere of a norm. Lemma 3 below is closely related to the so-called “convexity of
the floating body”, which was proved simultaneously by Meyer and Reisner [8] and
by the second-named author. We shall use the latter’s argument, but the difference
here is that the earlier proofs involved slabs of fixed volume, whereas here we fix
the slab width.

Lemma 3. For all positive t,

||x|| = |x|∫ t
−t g x

|x|
(s)ds

defines a norm on Rn.
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Proof. Let us first recall that g x
|x|

(s) =
∣∣∣K ∩ ( x

|x|
⊥ + s x|x|

)∣∣∣. We will denote the
volume of the slab of K perpendicular to x and of width 2t by

v(x, t) =
∫ t

−t
g x
|x|

(s)ds.

Our aim is thus to prove the following triangle inequality for all x, y ∈ Rn:

1
2

(
|x|

v(x, t)
+
|y|

v(y, t)

)
≥

∣∣x+y
2

∣∣
v
(
x+y

2 , t
) .

Notice that the result is obvious when the angle between x and y is zero or π.
We consider the convex body

K ′ = K × [−1, 1] ⊂ Rn ×R = Rn+1.

Busemann’s theorem tells us that, since K ′ is a symmetric, convex body in Rn+1,
then |θ|

|K′∩θ⊥| defines a norm on Rn+1/{0}. Hence

(2)
1
2

(
|θ|

|K ′ ∩ θ⊥| +
|φ|

|K ′ ∩ φ⊥|

)
≥

∣∣∣ θ+φ2

∣∣∣∣∣∣∣K ′ ∩ (θ+φ2

)⊥∣∣∣∣
for all θ, φ ∈ Rn+1.

Given x ∈ Rn and t =
√

1−r2

r , where r > 0, if we choose u ∈ Rn+1 as

u =
(
r
x

|x| ,
√

1− r2

)
,

then the projection of K ′ ∩ u⊥ onto the first n coordinates is precisely the slab of
K perpendicular to x and of width 2t. The ratio of v(x, t) to the volume |K ′ ∩ u⊥|
is then just

√
1− r2. (Observe that r determines the angle between u⊥ and Rn).

Now take θ = |x|u so that |K ′ ∩ u⊥| = |K ′ ∩ θ⊥| and |θ| = |x|. Then inequality
(2) simplifies to

1
2

(
|x|

v(x, t)
+
|y|

v(y, t)

)
≥ 1√

1− r2

∣∣∣ θ+φ2

∣∣∣∣∣∣∣K ′ ∩ ( θ+φ2

)⊥∣∣∣∣ ,
where we have repeated the above for y ∈ Rn with φ.

Now
θ + φ

2
=
(
r

(x+ y)
2

,
√

1− r2
(|x| + |y|)

2

)
.

Hence the projection of K ′ ∩
(
θ+φ

2

)⊥
is a slab perpendicular to x+y

2 whose width

now depends on r,
∣∣x+y

2

∣∣ and |x|+|y|2 . In fact the width is 2s, where

s =
|x|+ |y|
|x+ y| t,

and we get
v
(
x+y

2 , s
)∣∣∣∣K ′ ∩ ( θ+φ2

)⊥∣∣∣∣ =
√

1− r2

2
(|x|+ |y|)∣∣∣θ+φ2

∣∣∣ .
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Inequality (2) thus simplifies further to

1
2

(
|x|

v(x, t)
+
|y|

v(y, t)

)
≥ 1

2
(|x| + |y|)
v
(
x+y

2 , s
) .

Now we need only notice that for any a ≥ 1 and x ∈ Rn we have v(x, at) ≤ a v(x, t),
since g x

|x|
(as) ≤ g x

|x|
(s) for all s. So

1
2

(|x|+ |y|)
v
(
x+y

2 , s
) ≥ ∣∣x+y

2

∣∣
v
(
x+y

2 , t
) . �

Since
∫ t
−t gθ(s) ds is the reciprocal of a norm, we can get a Lipschitz estimate for

this function just by estimating its size. This we do in the following lemmas. The
first is a well-known consequence of the Brunn-Minkowski inequality, which implies
that gθ is a log-concave function. (See, e.g., [3].)

Lemma 4. For all positive t,∫ ∞
t

gθ(s)ds ≤
1
2
e−2gθ(0)t.

Lemma 5. For each t there are constants a and b so that if

||x|| = |x|∫ t
−t g x

|x|
(s) ds

,

then
a|x| ≤ ||x|| ≤ b|x|,

where b
a ≤ 5 and 1

a ≤ 1.

Proof. Again from well-known results on log-concave functions (which can also be
found in [3]) we can relate the value gθ(0) to the variance ρ in the following way.

1√
12ρ
≤ gθ(0) ≤ 1√

2ρ
.

So using Lemma 4 we get∫ t

−t
gθ(s) ds ≤ min {2t gθ(0), 1} ≤ min

{√
2t
ρ
, 1

}
and ∫ t

−t
gθ(s) ds = 1− 2

∫ ∞
t

gθ(s) ds

≥ 1− e−2gθ(0)t

≥ 1− e−
t√
3ρ

≥ min
{
t

3ρ
,

1
3
√

2

}
.

Therefore, taking

a =
1

min
{√

2t
ρ , 1

} , b =
1

min
{
t

3ρ ,
1

3
√

2

} ,
we obtain the required bounds, whatever the value of t

ρ . �
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We are now ready to obtain the estimate for specific directions.

Proof of Theorem 2. As was explained earlier, we need to determine a Lipschitz
estimate for

∫ t
−t gθ(s) ds, i.e., to find a constant d such that∣∣∣∣∫ t

−t
gθ(s) ds−

∫ t

−t
gφ(s) ds

∣∣∣∣ ≤ d|θ − φ| for θ, φ ∈ Sn−1.

Now, with the norm notation used above,∣∣∣∣∫ t

−t
gθ(s) ds−

∫ t

−t
gφ(s) ds

∣∣∣∣ =
∣∣∣∣ 1
||θ|| −

1
||φ||

∣∣∣∣
≤ ||θ − φ||
||θ|| ||φ||

≤ b

a2
|θ − φ|

≤ 5|θ − φ|
by Lemma 5.

Coupled with this Lipschitz estimate, Lemma 2 immediately gives

σ

({
θ :
∣∣∣∣∫ t

−t
gθ(s) ds−A(t)

∣∣∣∣ ≥ δ +
c2√
n

})
≤ 2 exp

(
−nδ

2

50

)
.

Combining this with Theorem 1, which estimates A(t), we get

σ

({
θ :
∣∣∣∣∫ t

−t
gθ(s)ds−

∫ t

−t
g(s)ds

∣∣∣∣ ≥ δ + 4ε+
c3√
n

})
≤ 2 exp

(
−nδ

2

50

)
,

as required. �

To finish this section, we pass from Theorem 2 to a statement which holds for
every t simultaneously. This then tells us that most Xθ are very close to a Gaussian
r.v. with variance ρ2.

For a given θ, let

H(t) =
∣∣∣∣∫ t

−t
gθ(s) ds−

∫ t

−t
g(s) ds

∣∣∣∣
be the error at position t.

We saw in the proof of Lemma 5 that gθ(s) is bounded above by 1√
2ρ

, and we

recall that g(s) is the Gaussian density 1
ρ
√

2π
e−s

2/2ρ2
. Hence

|H ′(t)| ≤
√

2
ρ

+
2

ρ
√

2π
,

so H is Lipschitz with a constant like 1
ρ .

By pinning H down at appropriate points we can use the Lipschitz property
to pin it down elsewhere as long as we allow an additional error. We need only
consider points in [0, 2ρ logn], since we see, with the aid of Lemma 4, that H is
sufficiently small for all t beyond this interval. Dividing this interval into 2

√
n log n

smaller intervals of length ρ√
n

gives an additional error of
(√

2 + 2√
2π

)
1√
n

, which

is absorbed by the earlier error terms. We thus give up a factor of 2
√
n logn in the

probability.
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Theorem 4. Under the concentration hypothesis (1), for δ > 0 we have

σ

({
θ : H(t) ≤ δ + 4ε+

c√
n

for all t
})

≥ 1− 4
√
n logn e−

nδ2
50

≥ 1− n e−nδ
2

50 .

2. The concentration property for lnp balls

In this section we show that lnp balls satisfy the concentration hypothesis (1)
with ε ≈ 1

n1/3 .
The precise statement is the following, in which ρ2

n is the variance for the appro-
priate ball.

Theorem 5. If P is the Lebesgue measure on the normalized lnp ball, then for all
positive numbers r,

P

(∣∣∣∣ |x|2n − ρn2

∣∣∣∣ ≥ r) ≤ 35ρn4

nr2
.

The estimate depends upon a subindependence property for the complements
of coordinate slabs in K. Much stronger concentration results could doubtless be
proved by approximating the bodies by independent random variables, but the
argument here is a good deal simpler, and for our purposes, a better decay rate is
of little use. The subindependence property for lnp balls was proved by the second
and third named authors in [4]. Here we offer a more succinct proof, alluded to in
the aforementioned article.

Lemma 6 (Subindependence of complements of coordinate slabs). If the probability
P is normalised Lebesgue measure on one of the lnp balls, say K, then for any
sequence t1,. . . ,tn of positive numbers,

P

(
n⋂
i=1

{|xi| ≥ ti}
)
≤

n∏
i=1

P ({|xi| ≥ ti}).

Proof. Plainly it is enough to prove that

P

(
n⋂
i=1

{|xi| ≥ ti}
)
≤ P (|x1| ≥ t1)P

(
n⋂
i=2

{|xi| ≥ ti}
)
.

We first rewrite the above with S =
⋂n
i=2{|xi| ≥ ti}:

|K ∩ S ∩ {|x1| ≥ t1}|
|K| ≤ |K ∩ {|x1| ≥ t1}|

|K|
|K ∩ S|
|K| .

Now we use the obvious fact that if f : [0, 1]→ R is increasing and satisfies∫ 1

0

fdµ = αµ[0, 1]

for some positive measure µ and constant α > 0, then

(3)
∫ s

0

fdµ ≤ αµ[0, s] for all s ∈ [0, 1].

We take

f(u) =
|K ∩ S ∩ {|x1| = 1− u}|
|K ∩ {|x1| = 1− u}|
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and let

g(u) =
|K ∩ {|x1| = 1− u}|

|K|
be the density of our measure µ. Then∫ 1

0

f(u)dµ =
∫ 1

0

|K ∩ S ∩ {|x1| = 1− u}|
|K ∩ {|x1| = 1− u}|

|K ∩ {|x1| = 1− u}|
|K| du

=
|K ∩ S|
|K|

and ∫ 1−t

0

f(u)dµ =
|K ∩ S ∩ {|x1| ≥ t}|

|K| .

Taking α = |K∩S|
|K| and s = 1− t1 in (3) completes the proof. �

The corollary below, an anti-correlation inequality for the coordinate random
variables Xi : x→ 〈x, ei〉, follows directly from Lemma 1 if we notice that∫

K∩{x1≥0,x2≥0}
x2

1x
2
2 can be expressed as 4

∫
R2

+

uvP (x1 ≥ u, x2 ≥ v)dudv .

Corollary 1. ∫
K

x2
1x

2
2 ≤

∫
K

x2
1

∫
K

x2
2.

The proof of Theorem 5 relies on the fact that
∫
K |x|

4 can be written in terms of∑n
1

∫
K
xi

4 and
∑

i6=j xi
2xj

2. The second term is dealt with using subindependence.
For the first we use a cruder estimate derived from a standard result concerning
log-concave functions: ∫

K

xi
4 ≤ 36

(∫
K

x2
i

)2

.

The crudity doesn’t matter, since there are so few contributions to this term.

Proof of Theorem 5. We first prove that 1
n2

∫
K |x|

4 is close to ρ4
n; namely, that

ρ4
n ≤

1
n2

∫
K

|x|4 ≤
(

1 +
35
n

)
ρ4
n.

The first inequality is obvious by Cauchy-Schwarz.
For the second one we have∫

K

|x|4 =
∫
K

(
n∑
i=1

x2
i

)2

=
n∑
1

∫
K

x4
i +

∑
i6=j

∫
K

x2
i x

2
j

≤ n

∫
K

x4
i +

∑
i6=j

∫
K

x2
i

∫
K

x2
j

≤ 36nρ4
n + n(n− 1)ρ4

n

= n2

(
1 +

35
n

)
ρ4
n.
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From this we can conclude that the integral
∫
K

(
|x|2
n − ρ2

n

)2

is small and therefore

that |x|
2

n is close to ρ2
n. Indeed,

0 ≤
∫
K

(
|x|2
n
− ρ2

n

)2

=
1
n2

∫
K

|x|4 − 2ρ2
n

n

∫
K

|x|2 + ρ4
n

=
1
n2

∫
K

|x|4 − 2
n
ρ2
nnρ

2
n + ρ4

n

=
1
n2

∫
K

|x|4 − ρ4
n

≤ 35
n
ρ4
n.

So by Chebyshev’s inequality we have

P

(∣∣∣∣ |x|2n − ρ2
n

∣∣∣∣ ≥ r) r2 = P

((
|x|2
n
− ρ2

n

)2

≥ r2

)
r2

≤
∫
K

(
|x|2
n
− ρ2

n

)2

≤ 35
n
ρ4
n. �

By factoring the difference of two squares, we can estimate the deviation of |x|√
n

instead of |x|
2

n .

Corollary 2. For all positive numbers u,

P

(∣∣∣∣ |x|√n − ρn
∣∣∣∣ ≥ u) ≤ 35ρ2

n

nu2
.

By taking u to be of the order of 1
n1/3 we obtain ε-concentration with ε ≈ 1

n1/3 .

3. The concentration property for uniformly convex bodies

contained in small Euclidean balls

K is said to be uniformly convex if for every γ > 0 we have

inf
{

1− ||x+ y||
2

: ||x||, ||y|| ≤ 1, ||x− y|| ≥ γ
}

= δ(γ) > 0,

where ||.|| is the norm whose unit ball is K. We shall consider bodies for which

(4) δ(γ) ≥ c γq for some 2 ≤ q <∞,
and assume that

(5) K ⊂ R
√
nBn2 .

Then we shall show that

Theorem 6. For K satisfying (4) and (5),

P

(∣∣∣∣ |x|√n − ρ
∣∣∣∣ > c′R

√
logn

n
1
q

)
<

1
n
.
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Hence we have concentration as long as µ = c′R
√

logn

n
1
q

is small. Notice that in

order for µ to be small for a body with a good modulus of convexity, the Euclidean
ball containing it may be quite large. As K becomes less uniformly convex, it needs
to be contained in a smaller ball.

Conditions (4) and (5) are satisfied in an appropriate way by all lnp balls, for
1 < p <∞. For 1 < p ≤ 2, δ(γ) ≈ (p− 1)γ2. Here the bodies exhibit good uniform
convexity, since the power of γ remains 2. This compensates for the fact that
R = n

1
p−

1
2 . On the other hand, for 2 < p <∞, the uniform convexity deteriorates

rapidly, since here δ(γ) ≈ γp. However, in this case R is at most a constant.
Theorem 6 is a simple corollary of the following result of Gromov and Milman [6],

which guarantees that uniformly convex bodies exhibit concentration with respect
to the distance given by the norm. We use the hypothesis (5) to transfer the
estimate to the Euclidean distance. The proof given here was found recently by J.
Arias de Reyna, K. Ball and R. Villa [1].

Theorem 7 (Gromov-Milman). If A ⊂ K has positive measure, and d(x,A) is the
distance from x to A (measured in the norm whose unit ball is K), then

P (d(x,A) > ε) <
e−2nδ(ε)

P (A)
.

Proof. Suppose that A,B ⊂ K are such that B = {x ∈ K : d(x,A) > ε}. Since K
is uniformly convex, if x ∈ A and y ∈ B then ||x+y||

2 ≤ 1− δ(ε). Hence

(6)
A+B

2
⊂ (1− δ(ε))K.

By the Brunn-Minkowski inequality,

(7) P

(
A+B

2

)
≥ P (A)

1
2 P (B)

1
2 .

Combining (6) and (7), we get

P (B) ≤ (1− δ(ε))2n

P (A)
≤ e−2nδ(ε)

P (A)
. �

Proof of Theorem 6. Let λ be the median of |x|√
n

on K and A =
(
|x|√
n
≤ λ

)
. Then,

by Theorem 7,
P (d(x,A) > γ) ≤ 2 e−2nδ(γ)

and
P (d(x,Ac) > γ) ≤ 2e−2nδ(γ).

Now if y ∈ A and d(x, y) < γ, then |x− y| < R
√
nγ since K ⊂ R√nBn2 . Hence

P
(∣∣|x| − λ√n∣∣ > R

√
nγ
)
≤ 4e−2nδ(γ)

≤ 4e−2ncγq .

This implies that, for some constant c′, the mean ρ differs from the median λ by
at most c′Rn−

1
q . Hence

P

(∣∣∣∣ |x|√n − ρ
∣∣∣∣ ≥ Rγ + c′Rn−

1
q

)
≤ 4e−2cnγq ,

and, letting γ = c′
√

logn

n
1
q

, we get the theorem. �
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